
CSS

#css

Table of Contents

About 1

Chapter 1: Getting started with CSS 2

Remarks 2

Versions 2

Examples 2

External Stylesheet 2

Example 2

Internal Styles 4

Inline Styles 4

CSS @import rule (one of CSS at-rule) 4

How to use @import 5

Changing CSS with JavaScript 5

Pure JavaScript 5

jQuery 5

See also 6

Styling Lists with CSS 6

Chapter 2: 2D Transforms 8

Syntax 8

Parameters 8

Remarks 9

2D Coordiante system 9

Browser support and prefixes 10

Example of prefixed transform: 10

Examples 10

Rotate 10

Scale 10

Translate 11

Skew 11

Multiple transforms 12

Transform Origin 13

Chapter 3: 3D Transforms 15

Remarks 15

Coordinate system 15

Examples 15

3D cube 16

backface-visibility 17

Compass pointer or needle shape using 3D transforms 18

CSS 18

HTML 18

3D text effect with shadow 19

Chapter 4: Animations 22

Syntax 22

Parameters 22

Examples 22

Animations with the transition property 22

Example 22

Cross-Browser Compatibility 23

Increasing Animation Performance Using the `will-change` Attribute 24

Animations with keyframes 24

Basic Example 24

Cross-browser compatibility 26

Syntax Examples 26

Chapter 5: Backgrounds 27

Introduction 27

Syntax 27

Remarks 27

Examples 27

Background Color 27

Color names 28

Hex color codes 28

RGB / RGBa 28

HSL / HSLa 29

Interaction with background-image 29

Background Image 30

Background Gradients 31

linear-gradient() 31

radial-gradient() 31

Repeating gradients 32

Background Shorthand 33

Syntax 33

Examples 33

Background Position 34

Longhand Background Position Properties 35

Background Attachment 35

Examples 35

background-attachment: scroll 35

background-attachment: fixed 36

background-attachment: local 36

Background Repeat 36

Background Color with Opacity 37

Multiple Background Image 37

The background-origin property 38

Background Clip 40

Background Size 41

General overview 41

Keeping the aspect ratio 43

Eggsplanation for contain and cover 43

contain 44

cover 44

Demonstration with actual code 45

background-blend-mode Property 46

Chapter 6: Block Formatting Contexts 47

Remarks 47

Examples 47

Using the overflow property with a value different to visible 47

Chapter 7: Border 49

Syntax 49

Remarks 49

Examples 51

border-radius 51

border-style 52

border (shorthands) 53

border-image 53

border-[left|right|top|bottom] 54

border-collapse 54

Multiple Borders 54

Creating a multi-colored border using border-image 55

CSS 55

HTML 56

Chapter 8: box-shadow 58

Syntax 58

Parameters 58

Remarks 58

Examples 58

drop shadow 58

inner drop shadow 59

bottom-only drop shadow using a pseudo-element 59

multiple shadows 60

Chapter 9: Browser Support & Prefixes 62

Parameters 62

Remarks 62

Examples 62

Transitions 62

Transform 63

Chapter 10: Cascading and Specificity 64

Remarks 64

Examples 64

Cascading 64

CSS Loading order 64

How are conflicts resolved? 64

Example 1 - Specificity rules 64

Example 2 - Cascade rules with identical selectors 65

Example 3 - Cascade rules after Specificity rules 65

A final note 65

The !important declaration 66

Calculating Selector Specificity 66

Example 1: Specificity of various selector sequences 67

Example 2: How specificity is used by the browser 67

Example 3: How to manipulate specificity 68

!important and inline style declarations 69

A final note 69

More complex specificity example 69

Chapter 11: Centering 71

Examples 71

Using CSS transform 71

CROSS BROWSER COMPATIBILITY 71

MORE INFORMATION 72

Using Flexbox 72

Using position: absolute 73

Ghost element technique (Micha Czernow's hack) 74

Using text-align 74

Centering in relation to another item 75

Vertical align anything with 3 lines of code 76

Vertically align an image inside div 76

Horizontal and Vertical centering using table layout 77

Using calc() 77

Vertically align dynamic height elements 78

Using line-height 79

Centering vertically and horizontally without worrying about height or width 79

The outer container 79

The inner container 79

The content box 79

Demo 80

Centering with fixed size 80

Horizontal centering with only fixed width 81

Vertical centering with fixed height 81

Using margin: 0 auto; 82

Chapter 12: Clipping and Masking 84

Syntax 84

Parameters 84

Remarks 85

Masks: 85

Clip-path: 85

Examples 86

Clipping (Polygon) 86

CSS: 86

HTML: 86

Clipping (Circle) 87

CSS: 87

HTML 87

Clipping and Masking: Overview and Difference 88

Clipping 88

Masking 88

Simple mask that fades an image from solid to transparent 89

CSS 89

HTML 89

Using masks to cut a hole in the middle of an image 90

CSS 90

HTML 90

Using masks to create images with irregular shapes 91

CSS 91

HTML 91

Chapter 13: Colors 93

Syntax 93

Examples 93

Color Keywords 93

Color Keywords 93

Hexadecimal Value 100

Background 100

Syntax 101

rgb() Notation 101

Syntax 102

hsl() Notation 102

Syntax 102

Notes 102

currentColor 103

Use in same element 103

Inherited from parent element 103

rgba() Notation 104

Syntax 104

hsla() Notation 105

Syntax 105

Chapter 14: Columns 106

Syntax 106

Examples 106

Simple Example (column-count) 106

Column Width 107

Chapter 15: Comments 109

Syntax 109

Remarks 109

Examples 109

Single Line 109

Multiple Line 109

Chapter 16: Counters 110

Syntax 110

Parameters 110

Remarks 110

Examples 110

Applying roman numerals styling to the counter output 111

CSS 111

HTML 111

Number each item using CSS Counter 111

CSS 111

HTML 112

Implementing multi-level numbering using CSS counters 112

CSS 112

HTML 112

Chapter 17: CSS design patterns 114

Introduction 114

Remarks 114

Examples 114

BEM 114

Code example 115

Chapter 18: CSS Image Sprites 116

Syntax 116

Remarks 116

Examples 116

A Basic Implementation 116

Chapter 19: CSS Object Model (CSSOM) 118

Remarks 118

Examples 118

Introduction 118

Adding a background-image rule via the CSSOM 118

Chapter 20: Cursor Styling 120

Syntax 120

Examples 120

Changing cursor type 120

pointer-events 121

caret-color 121

Chapter 21: Custom Properties (Variables) 122

Introduction 122

Syntax 122

Remarks 122

BROWSER SUPPORT / COMPATIBILITY 122

Examples 122

Variable Color 122

Variable Dimensions 123

Variable Cascading 123

Valid/Invalids 124

With media queries 125

Chapter 22: Feature Queries 127

Syntax 127

Parameters 127

Remarks 127

Examples 127

Basic @supports usage 127

Chaining feature detections 127

Chapter 23: Filter Property 129

Syntax 129

Parameters 129

Remarks 130

Examples 130

Drop Shadow (use box-shadow instead if possible) 130

Multiple Filter Values 130

Hue Rotate 131

Invert Color 132

Blur 132

Chapter 24: Flexible Box Layout (Flexbox) 134

Introduction 134

Syntax 134

Remarks 134

Vender Prefixes 134

Resources 134

Examples 135

Sticky Variable-Height Footer 135

Holy Grail Layout using Flexbox 135

Perfectly aligned buttons inside cards with flexbox 137

Dynamic Vertical and Horizontal Centering (align-items, justify-content) 139

Simple Example (centering a single element) 139

HTML 139

CSS 139

Reasoning 139

Individual Property Examples 140

Example: justify-content: center on a horizontal flexbox 140

Example: justify-content: center on a vertical flexbox 141

Example: align-content: center on a horizontal flexbox 142

Example: align-content: center on a vertical flexbox 143

Example: Combination for centering both on horizontal flexbox 144

Example: Combination for centering both on vertical flexbox 145

Same height on nested containers 146

Optimally fit elements to their container 147

Chapter 25: Floats 149

Syntax 149

Remarks 149

Examples 149

Float an Image Within Text 149

Simple Two Fixed-Width Column Layout 150

Simple Three Fixed-Width Column Layout 151

Two-Column Lazy/Greedy Layout 152

clear property 153

Clearfix 154

Clearfix (with top margin collapsing of contained floats still occurring) 154

Clearfix also preventing top margin collapsing of contained floats 154

Clearfix with support of outdated browsers IE6 and IE7 155

In-line DIV using float 155

Use of overflow property to clear floats 157

Chapter 26: Fragmentation 158

Syntax 158

Parameters 158

Remarks 158

Examples 158

Media print page-break 158

Chapter 27: Functions 160

Syntax 160

Remarks 160

Examples 160

calc() function 160

attr() function 161

linear-gradient() function 161

radial-gradient() function 161

var() function 161

Chapter 28: Grid 163

Introduction 163

Remarks 163

Examples 163

Basic Example 163

Chapter 29: Inheritance 165

Syntax 165

Examples 165

Automatic inheritance 165

Enforced inheritance 165

Chapter 30: Inline-Block Layout 167

Examples 167

Justified navigation bar 167

HTML 167

CSS 167

Notes 167

Chapter 31: Internet Explorer Hacks 169

Remarks 169

Examples 169

High Contrast Mode in Internet Explorer 10 and greater 169

Examples 169

More Information: 169

Internet Explorer 6 & Internet Explorer 7 only 169

Internet Explorer 8 only 170

Adding Inline Block support to IE6 and IE7 170

Chapter 32: Layout Control 171

Syntax 171

Parameters 171

Examples 172

The display property 172

Inline 172

Block 172

Inline Block 172

none 174

To get old table structure using div 174

Chapter 33: Length Units 176

Introduction 176

Syntax 176

Parameters 176

Remarks 177

Examples 177

Font size with rem 177

Creating scalable elements using rems and ems 178

vh and vw 179

vmin and vmax 179

using percent % 179

Chapter 34: List Styles 181

Syntax 181

Parameters 181

Remarks 181

Examples 181

Type of Bullet or Numbering 181

Bullet Position 182

Removing Bullets / Numbers 182

Chapter 35: Margins 184

Syntax 184

Parameters 184

Remarks 184

Examples 184

Apply Margin on a Given Side 184

Direction-Specific Properties 184

Specifying Direction Using Shorthand Property 185

Margin Collapsing 186

Horizontally center elements on a page using margin 188

Margin property simplification 188

Negative margins 189

Example 1: 189

Chapter 36: Media Queries 191

Syntax 191

Parameters 191

Remarks 192

Examples 193

Basic Example 193

Use on link tag 193

mediatype 193

Using Media Queries to Target Different Screen Sizes 194

Width vs Viewport 195

Media Queries for Retina and Non Retina Screens 196

Terminology and Structure 196

General Structure of a Media Query 196

A Media Query containing a Media Type 196

A Media Query containing a Media Type and a Media Feature 197

A Media Query containing a Media Feature (and an implicit Media Type of "all") 197

Media queries and IE8 197

A Javascript based workaround 197

The alternative 198

Chapter 37: Multiple columns 199

Introduction 199

Remarks 199

Examples 199

Basic example 199

Create Multiple Columns 200

Chapter 38: Normalizing Browser Styles 201

Introduction 201

Remarks 201

Examples 201

normalize.css 201

What does it do 201

Difference to reset.css 202

Approaches and Examples 202

Chapter 39: Object Fit and Placement 204

Remarks 204

Examples 204

object-fit 204

Chapter 40: Opacity 207

Syntax 207

Remarks 207

Examples 207

Opacity Property 207

IE Compatibility for `opacity` 207

Chapter 41: Outlines 209

Syntax 209

Parameters 209

Remarks 209

Examples 210

Overview 210

outline-style 210

Chapter 42: Overflow 212

Syntax 212

Parameters 212

Remarks 212

Examples 212

overflow: scroll 212

overflow-wrap 213

overflow: visible 214

Block Formatting Context Created with Overflow 215

overflow-x and overflow-y 216

Chapter 43: Padding 218

Syntax 218

Remarks 218

Examples 218

Padding on a given side 218

Padding Shorthand 219

Chapter 44: Performance 221

Examples 221

Use transform and opacity to avoid trigger layout 221

DON'T 221

DO 222

Chapter 45: Positioning 223

Syntax 223

Parameters 223

Remarks 223

Examples 223

Fixed position 223

Overlapping Elements with z-index 224

Example 224

HTML 224

CSS 224

Syntax 225

Remarks 225

Relative Position 226

Absolute Position 226

Static positioning 226

Chapter 46: Pseudo-Elements 228

Introduction 228

Syntax 228

Parameters 228

Remarks 228

Examples 229

Pseudo-Elements 229

Pseudo-Elements in Lists 229

Chapter 47: Selectors 231

Introduction 231

Syntax 231

Remarks 231

Examples 231

Attribute Selectors 231

Overview 231

Details 232

[attribute] 232

[attribute="value"] 233

[attribute*="value"] 233

[attribute~="value"] 233

[attribute^="value"] 234

[attribute$="value"] 234

[attribute|="value"] 234

[attribute="value" i] 234

Specificity of attribute selectors 235

0-1-0 235

Combinators 235

Overview 235

Descendant Combinator: selector selector 235

Child Combinator: selector > selector 236

Adjacent Sibling Combinator: selector + selector 236

General Sibling Combinator: selector ~ selector 237

Class Name Selectors 237

ID selectors 238

Pseudo-classes 239

Syntax 239

List of pseudo-classes: 239

Basic selectors 242

How to style a Range input 242

Global boolean with checkbox:checked and ~ (general sibling combinator) 243

Add boolean as a checkbox 243

Change the boolean's value 243

Accessing boolean value with CSS 243

In action 244

CSS3 :in-range selector example 244

Child Pseudo Class 244

Select element using its ID without the high specificity of the ID selector 245

A. The :not pseudo-class example & B. :focus-within CSS pseudo-class 245

The :only-child pseudo-class selector example 247

The :last-of-type selector 248

Chapter 48: Shapes for Floats 249

Syntax 249

Parameters 249

Remarks 249

Examples 249

Shape Outside with Basic Shape – circle() 249

Shape margin 251

Chapter 49: Single Element Shapes 252

Examples 252

Square 252

Triangles 252

Bursts 256

Circles and Ellipses 257

Circle 257

Ellipse 258

Trapezoid 258

Cube 259

Pyramid 260

Chapter 50: Stacking Context 262

Examples 262

Stacking Context 262

Chapter 51: Structure and Formatting of a CSS Rule 266

Remarks 266

Good 266

Bad 266

One-Liner 266

Examples 266

Rules, Selectors, and Declaration Blocks 266

Property Lists 266

Multiple Selectors 267

Chapter 52: Tables 268

Syntax 268

Remarks 268

Examples 268

table-layout 268

border-collapse 269

border-spacing 269

empty-cells 270

caption-side 270

Chapter 53: The Box Model 272

Syntax 272

Parameters 272

Remarks 272

About padding-box 272

Examples 272

What is the Box Model? 272

The Edges 272

Example 273

box-sizing 274

Chapter 54: Transitions 277

Syntax 277

Parameters 277

Remarks 277

Examples 277

Transition shorthand 277

Transition (longhand) 278

CSS 278

HTML 278

cubic-bezier 279

Chapter 55: Typography 281

Syntax 281

Parameters 281

Remarks 282

Examples 282

Font Size 282

The Font Shorthand 282

Font Stacks 283

Letter Spacing 283

Text Transform 284

Text Indent 284

Text Decoration 285

Text Overflow 285

Word Spacing 286

Text Direction 286

Font Variant 287

Quotes 288

Text Shadow 288

Shadow without blur radius 288

Shadow with blur radius 288

Multiple Shadows 288

Chapter 56: Vertical Centering 289

Remarks 289

Examples 289

Centering with display: table 289

Centering with Transform 289

Centering with Flexbox 290

Centering Text with Line Height 290

Centering with Position: absolute 291

Centering with pseudo element 292

Credits 293

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: css

It is an unofficial and free CSS ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official CSS.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/css
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with CSS

Remarks

Styles can be authored in several ways, allowing for varying degrees of reuse and scope when
they are specified in a source HTML document. External stylesheets can be reused across HTML
documents. Embedded stylesheets apply to the entire document in which they are specified. Inline
styles apply only to the individual HTML element on which they are specified.

Versions

Version Release Date

1 1996-12-17

2 1998-05-12

3 2015-10-13

Examples

External Stylesheet

An external CSS stylesheet can be applied to any number of HTML documents by placing a <link>
element in each HTML document.

The attribute rel of the <link> tag has to be set to "stylesheet", and the href attribute to the
relative or absolute path to the stylesheet. While using relative URL paths is generally considered
good practice, absolute paths can be used, too. In HTML5 the type attribute can be omitted.

It is recommended that the <link> tag be placed in the HTML file's <head> tag so that the styles are
loaded before the elements they style. Otherwise, users will see a flash of unstyled content.

Example

hello-world.html

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <link rel="stylesheet" type="text/css" href="style.css">
 </head>
 <body>
 <h1>Hello world!</h1>

https://riptutorial.com/ 2

https://www.w3.org/TR/REC-CSS1/
https://www.w3.org/TR/REC-CSS2/
https://www.w3.org/TR/css-2015/
https://html.spec.whatwg.org/multipage/semantics.html#the-link-element
http://stackoverflow.com/a/1642259/2397327

 <p>I ♥ CSS</p>
 </body>
</html>

style.css

h1 {
 color: green;
 text-decoration: underline;
}
p {
 font-size: 25px;
 font-family: 'Trebuchet MS', sans-serif;
}

Make sure you include the correct path to your CSS file in the href. If the CSS file is in the same
folder as your HTML file then no path is required (like the example above) but if it's saved in a
folder, then specify it like this href="foldername/style.css".

<link rel="stylesheet" type="text/css" href="foldername/style.css">

External stylesheets are considered the best way to handle your CSS. There's a very simple
reason for this: when you're managing a site of, say, 100 pages, all controlled by a single
stylesheet, and you want to change your link colors from blue to green, it's a lot easier to make the
change in your CSS file and let the changes "cascade" throughout all 100 pages than it is to go
into 100 separate pages and make the same change 100 times. Again, if you want to completely
change the look of your website, you only need to update this one file.

You can load as many CSS files in your HTML page as needed.

<link rel="stylesheet" type="text/css" href="main.css">
<link rel="stylesheet" type="text/css" href="override.css">

CSS rules are applied with some basic rules, and order does matter. For example, if you have a
main.css file with some code in it:

p.green { color: #00FF00; }

All your paragraphs with the 'green' class will be written in light green, but you can override this
with another .css file just by including it after main.css. You can have override.css with the
following code follow main.css, for example:

p.green { color: #006600; }

Now all your paragraphs with the 'green' class will be written in darker green rather than light
green.

Other principles apply, such as the '!important' rule, specificity, and inheritance.

https://riptutorial.com/ 3

When someone first visits your website, their browser downloads the HTML of the current page
plus the linked CSS file. Then when they navigate to another page, their browser only needs to
download the HTML of that page; the CSS file is cached, so it does not need to be downloaded
again. Since browsers cache the external stylesheet, your pages load faster.

Internal Styles

CSS enclosed in <style></style> tags within an HTML document functions like an external
stylesheet, except that it lives in the HTML document it styles instead of in a separate file, and
therefore can only be applied to the document in which it lives. Note that this element must be
inside the <head> element for HTML validation (though it will work in all current browsers if placed
in body).

<head>
 <style>
 h1 {
 color: green;
 text-decoration: underline;
 }
 p {
 font-size: 25px;
 font-family: 'Trebuchet MS', sans-serif;
 }
 </style>
</head>
<body>
 <h1>Hello world!</h1>
 <p>I ♥ CSS</p>
</body>

Inline Styles

Use inline styles to apply styling to a specific element. Note that this is not optimal. Placing style
rules in a <style> tag or external CSS file is encouraged in order to maintain a distinction between
content and presentation.

Inline styles override any CSS in a <style> tag or external style sheet. While this can be useful in
some circumstances, this fact more often than not reduces a project's maintainability.

The styles in the following example apply directly to the elements to which they are attached.

<h1 style="color: green; text-decoration: underline;">Hello world!</h1>
<p style="font-size: 25px; font-family: 'Trebuchet MS';">I ♥ CSS</p>

Inline styles are generally the safest way to ensure rendering compatibility across various email
clients, programs and devices, but can be time-consuming to write and a bit challenging to
manage.

CSS @import rule (one of CSS at-rule)

The @import CSS at-rule is used to import style rules from other style sheets. These rules must

https://riptutorial.com/ 4

precede all other types of rules, except @charset rules; as it is not a nested statement, @import
cannot be used inside conditional group at-rules. @import.

How to use @import

You can use @import rule in following ways:

A. With internal style tag

 <style>
 @import url('/css/styles.css');
 </style>

B. With external stylesheet

The following line imports a CSS file named additional-styles.css in the root directory into the
CSS file in which it appears:

@import '/additional-styles.css';

Importing external CSS is also possible. A common use case are font files.

@import 'https://fonts.googleapis.com/css?family=Lato';

An optional second argument to @import rule is a list of media queries:

@import '/print-styles.css' print;
@import url('landscape.css') screen and (orientation:landscape);

Changing CSS with JavaScript

Pure JavaScript

It's possible to add, remove or change CSS property values with JavaScript through an element's
style property.

var el = document.getElementById("element");
el.style.opacity = 0.5;
el.style.fontFamily = 'sans-serif';

Note that style properties are named in lower camel case style. In the example you see that the
css property font-family becomes fontFamily in javascript.

As an alternative to working directly on elements, you can create a <style> or <link> element in
JavaScript and append it to the <body> or <head> of the HTML document.

jQuery

https://riptutorial.com/ 5

https://developer.mozilla.org/en/docs/Web/CSS/@import

Modifying CSS properties with jQuery is even simpler.

$('#element').css('margin', '5px');

If you need to change more than one style rule:

$('#element').css({
 margin: "5px",
 padding: "10px",
 color: "black"
});

jQuery includes two ways to change css rules that have hyphens in them (i.e. font-size). You can
put them in quotes or camel-case the style rule name.

$('.example-class').css({
 "background-color": "blue",
 fontSize: "10px"
});

See also

JavaScript documentation – Reading and Changing CSS Style.•
jQuery documentation – CSS Manipulation•

Styling Lists with CSS

There are three different properties for styling list-items: list-style-type, list-style-image, and
list-style-position, which should be declared in that order. The default values are disc, outside,
and none, respectively. Each property can be declared separately, or using the list-style
shorthand property.

list-style-type defines the shape or type of bullet point used for each list-item.

Some of the acceptable values for list-style-type:

disc•
circle•
square•
decimal•
lower-roman•
upper-roman•
none•

(For an exhaustive list, see the W3C specification wiki)

To use square bullet points for each list-item, for example, you would use the following property-
value pair:

https://riptutorial.com/ 6

http://www.riptutorial.com/dom/example/6065/reading-and-changing-inline-styles
http://www.riptutorial.com/jquery/topic/2732/css-manipulation
https://www.w3.org/wiki/CSS/Properties/list-style-type

li {
 list-style-type: square;
}

The list-style-image property determines whether the list-item icon is set with an image, and
accepts a value of none or a URL that points to an image.

li {
 list-style-image: url(images/bullet.png);
}

The list-style-position property defines where to position the list-item marker, and it accepts one
of two values: "inside" or "outside".

li {
 list-style-position: inside;
}

Read Getting started with CSS online: https://riptutorial.com/css/topic/293/getting-started-with-css

https://riptutorial.com/ 7

https://riptutorial.com/css/topic/293/getting-started-with-css

Chapter 2: 2D Transforms

Syntax

Rotate Transform•
transform: rotate(<angle>)•
Translate Transform•
transform: translate(<length-or-percentage> [, <length-or-percentage>]?)•
transform: translateX(<length-or-percentage>)•
transform: translateY(<length-or-percentage>)•
Skew Transform•
transform: skew(<angle> [, <angle>]?)•
transform: skewX(<angle>)•
transform: skewY(<angle>)•
Scale Transform•
transform: scale(<scale-factor> [, <scale-factor>]?)•
transform: scaleX(<scale-factor>)•
transform: scaleY(<scale-factor>)•
Matrix Transform•
transform: matrix(<number> [, <number>]{5,5})•

Parameters

Function/Parameter Details

rotate(x)
Defines a transformation that moves the element around a fixed point
on the Z axis

translate(x,y) Moves the position of the element on the X and Y axis

translateX(x) Moves the position of the element on the X axis

translateY(y) Moves the position of the element on the Y axis

scale(x,y) Modifies the size of the element on the X and Y axis

scaleX(x) Modifies the size of the element on the X axis

scaleY(y) Modifies the size of the element on the Y axis

skew(x,y)
Shear mapping, or transvection, distorting each point of an element
by a certain angle in each direction

skewX(x)
Horizontal shear mapping distorting each point of an element by a
certain angle in the horizontal direction

https://riptutorial.com/ 8

Function/Parameter Details

skewY(y)
Vertical shear mapping distorting each point of an element by a
certain angle in the vertical direction

matrix() Defines a 2D transformation in the form of a transformation matrix.

angle

The angle by which the element should be rotated or skewed
(depending on the function with which it is used). Angle can be
provided in degrees (deg), gradians (grad), radians (rad) or turns (turn
). In skew() function, the second angle is optional. If not provided,
there will be no (0) skew in Y-axis.

length-or-percentage

The distance expressed as a length or a percentage by which the
element should be translated. In translate() function, the second
length-or-percentage is optional. If not provided, then there would be
no (0) translation in Y-axis.

scale-factor

A number which defines how many times the element should be
scaled in the specified axis. In scale() function, the second scale-
factor is optional. If not provided, the first scale-factor will be applied
for Y-axis also.

Remarks

2D Coordiante system

Transforms are made according to a 2D X/Y coordiante system. The X axis goes from right to left
and the Y axis goes downwards as shown in the following image:

So a positive translateY() goes downwards and a positive translateX() goes right.

https://riptutorial.com/ 9

https://i.stack.imgur.com/epKMy.jpg

Browser support and prefixes

IE supports this property since IE9 with the -ms- prefix. Older versions and Edge don't need
the prefix

•

Firefox supports it since version 3.5 and needs the -moz- prefix until version 15•
Chrome since version 4 and until version 34 needs the -webkit- prefix•
Safari needs the -webkit- prefix until version 8•
Opera needs the -o- prefix for version 11.5 and the -webkit- prefix from version 15 to 22•
Android needs the -webkit- prefix from version 2.1 to 4.4.4•

Example of prefixed transform:

-webkit-transform: rotate(45deg);
 -ms-transform: rotate(45deg);
 transform: rotate(45deg);

Examples

Rotate

HTML

<div class="rotate"></div>

CSS

.rotate {
 width: 100px;
 height: 100px;
 background: teal;
 transform: rotate(45deg);
}

This example will rotate the div by 45 degrees clockwise. The center of rotation is in the center of
the div, 50% from left and 50% from top. You can change the center of rotation by setting the
transform-origin property.

transform-origin: 100% 50%;

The above example will set the center of rotation to the middle of the right side end.

Scale

HTML

<div class="scale"></div>

https://riptutorial.com/ 10

CSS

.scale {
 width: 100px;
 height: 100px;
 background: teal;
 transform: scale(0.5, 1.3);
}

This example will scale the div to 100px * 0.5 = 50px on the X axis and to 100px * 1.3 = 130px on
the Y axis.

The center of the transform is in the center of the div, 50% from left and 50% from top.

Translate

HTML

<div class="translate"></div>

CSS

.translate {
 width: 100px;
 height: 100px;
 background: teal;
 transform: translate(200px, 50%);
}

This example will move the div by 200px on the X axis and by 100px * 50% = 50px on the Y axis.

You can also specify translations on a single axis.

On the X axis:

.translate {
 transform: translateX(200px);
}

On the Y axis:

.translate {
 transform: translateY(50%);
}

Skew

HTML

<div class="skew"></div>

https://riptutorial.com/ 11

CSS

.skew {
 width: 100px;
 height: 100px;
 background: teal;
 transform: skew(20deg, -30deg);
}

This example will skew the div by 20 degrees on the X axis and by - 30 degrees on the Y axis.
The center of the transform is in the center of the div, 50% from left and 50% from top.

See the result here.

Multiple transforms

Multiple transforms can be applied to an element in one property like this:

transform: rotate(15deg) translateX(200px);

This will rotate the element 15 degrees clockwise and then translate it 200px to the right.

In chained transforms, the coordinate system moves with the element. This means that the
translation won't be horizontal but on an axis rotate 15 degrees clockwise as shown in the
following image:

https://riptutorial.com/ 12

https://jsfiddle.net/MadalinaTn/gtt4osms/1/
https://i.stack.imgur.com/Ur0RG.jpg

Changing the order of the transforms will change the output. The first example will be different to

transform: translateX(200px) rotate(15deg);

<div class="transform"></div>

.transform {
 transform: rotate(15deg) translateX(200px);
}

As shown in this image:

Transform Origin

Transformations are done with respect to a point which is defined by the transform-origin property.

The property takes 2 values : transform-origin: X Y;

In the following example the first div (.tl) is rotate around the top left corner with transform-origin:
0 0; and the second (.tr)is transformed around it's top right corner with transform-origin: 100% 0.
The rotation is applied on hover :

HTML:

https://riptutorial.com/ 13

https://i.stack.imgur.com/QozeC.jpg

<div class="transform originl"></div>
<div class="transform origin2"></div>

CSS:

.transform {
 display: inline-block;
 width: 200px;
 height: 100px;
 background: teal;
 transition: transform 1s;
}

.origin1 {
 transform-origin: 0 0;
}

.origin2 {
 transform-origin: 100% 0;
}

.transform:hover {
 transform: rotate(30deg);
}

The default value for the transform-origin property is 50% 50% which is the center of the element.

Read 2D Transforms online: https://riptutorial.com/css/topic/938/2d-transforms

https://riptutorial.com/ 14

https://riptutorial.com/css/topic/938/2d-transforms

Chapter 3: 3D Transforms

Remarks

Coordinate system

3D transforms are made according to an (x, y, z) coordinate vector system in Euclidean space.

The following image shows an example of coordinates in Euclidean space:

In CSS,

The x axis represents the horizontal (left and right)•
The y axis represents the vertical (up and down)•
The z axis represents the depth (forward and backward/closer and further)•

The following image shows how these coordinates are translated in CSS:

Examples

https://riptutorial.com/ 15

https://en.wikipedia.org/wiki/Euclidean_space
https://i.stack.imgur.com/ZR5bk.png
https://i.stack.imgur.com/9iEcz.png

3D cube

3D transforms can be use to create many 3D shapes. Here is a simple 3D CSS cube example:

HTML:

<div class="cube">
 <div class="cubeFace"></div>
 <div class="cubeFace face2"></div>
</div>

CSS:

body {
 perspective-origin: 50% 100%;
 perspective: 1500px;
 overflow: hidden;
}
.cube {
 position: relative;
 padding-bottom: 20%;
 transform-style: preserve-3d;
 transform-origin: 50% 100%;
 transform: rotateY(45deg) rotateX(0);
}
.cubeFace {
 position: absolute;
 top: 0;
 left: 40%;
 width: 20%;
 height: 100%;
 margin: 0 auto;
 transform-style: inherit;
 background: #C52329;
 box-shadow: inset 0 0 0 5px #333;
 transform-origin: 50% 50%;
 transform: rotateX(90deg);
 backface-visibility: hidden;
}
.face2 {
 transform-origin: 50% 50%;
 transform: rotatez(90deg) translateX(100%) rotateY(90deg);
}
.cubeFace:before, .cubeFace:after {
 content: '';
 position: absolute;
 width: 100%;
 height: 100%;
 transform-origin: 0 0;
 background: inherit;
 box-shadow: inherit;
 backface-visibility: inherit;
}
.cubeFace:before {
 top: 100%;
 left: 0;
 transform: rotateX(-90deg);
}

https://riptutorial.com/ 16

.cubeFace:after {
 top: 0;
 left: 100%;
 transform: rotateY(90deg);
}

View this example
Additional styling is added in the demo and a transform is applied on hover to view the 6 faces of
the cube.

Should be noted that:

4 faces are made with pseudo elements•
chained transforms are applied•

backface-visibility

The backface-visibility property relates to 3D transforms.

With 3D transforms and the backface-visibility property, you're able to rotate an element such
that the original front of an element no longer faces the screen.

For example, this would flip an element away from the screen:

JSFIDDLE

<div class="flip">Loren ipsum</div>
<div class="flip back">Lorem ipsum</div>

.flip {
 -webkit-transform: rotateY(180deg);
 -moz-transform: rotateY(180deg);
 -ms-transform: rotateY(180deg);
 -webkit-backface-visibility: visible;
 -moz-backface-visibility: visible;
 -ms-backface-visibility: visible;
}

.flip.back {
 -webkit-backface-visibility: hidden;
 -moz-backface-visibility: hidden;
 -ms-backface-visibility: hidden;
}

Firefox 10+ and IE 10+ support backface-visibility without a prefix. Opera, Chrome, Safari, iOS,
and Android all need -webkit-backface-visibility.

It has 4 values:

visible (default) - the element will always be visible even when not facing the screen.1.
hidden - the element is not visible when not facing the screen.2.
inherit - the property will gets its value from the its parent element3.

https://riptutorial.com/ 17

http://codepen.io/web-tiki/pen/NNwqBa
http://www.riptutorial.com/css/example/4130/multiple-transforms
https://jsfiddle.net/3z3z843c/

initial - sets the property to its default, which is visible4.

Compass pointer or needle shape using 3D transforms

CSS

div.needle {
 margin: 100px;
 height: 150px;
 width: 150px;
 transform: rotateY(85deg) rotateZ(45deg);
 /* presentational */
 background-image: linear-gradient(to top left, #555 0%, #555 40%, #444 50%, #333 97%);
 box-shadow: inset 6px 6px 22px 8px #272727;
}

HTML

<div class='needle'></div>

In the above example, a needle or compass pointer shape is created using 3D transforms.
Generally when we apply the rotate transform on an element, the rotation happens only in the Z-
axis and at best we will end up with diamond shapes only. But when a rotateY transform is added
on top of it, the element gets squeezed in the Y-axis and thus ends up looking like a needle. The
more the rotation of the Y-axis the more squeezed the element looks.

The output of the above example would be a needle resting on its tip. For creating a needle that is
resting on its base, the rotation should be along the X-axis instead of along Y-axis. So the
transform property's value would have to be something like rotateX(85deg) rotateZ(45deg);.

This pen uses a similar approach to create something that resembles the Safari logo or a compass
dial.

Screenshot of element with no transform:

Screenshot of element with only 2D transform:

https://riptutorial.com/ 18

http://codepen.io/hari_shanx/pen/YXzoBo
https://i.stack.imgur.com/MdwTb.png

Screenshot of element with 3D transform:

3D text effect with shadow

HTML:

<div id="title">
 <h1 data-content="HOVER">HOVER</h1>
</div>

CSS:

*{margin:0;padding:0;}
html,body{height:100%;width:100%;overflow:hidden;background:#0099CC;}
#title{
 position:absolute;
 top:50%; left:50%;
 transform:translate(-50%,-50%);
 perspective-origin:50% 50%;
 perspective:300px;
}
h1{
 text-align:center;
 font-size:12vmin;
 font-family: 'Open Sans', sans-serif;
 color:rgba(0,0,0,0.8);
 line-height:1em;

https://riptutorial.com/ 19

https://i.stack.imgur.com/7Puvn.png
https://i.stack.imgur.com/8Z7d8.png

 transform:rotateY(50deg);
 perspective:150px;
 perspective-origin:0% 50%;
}
h1:after{
 content:attr(data-content);
 position:absolute;
 left:0;top:0;
 transform-origin:50% 100%;
 transform:rotateX(-90deg);
 color:#0099CC;
}
#title:before{
 content:'';
 position:absolute;
 top:-150%; left:-25%;
 width:180%; height:328%;
 background:rgba(255,255,255,0.7);
 transform-origin: 0 100%;
 transform: translatez(-200px) rotate(40deg) skewX(35deg);
 border-radius:0 0 100% 0;
}

View example with additional hover effect

In this example, the text is transformed to make it look like it is going into the screen away from the
user.

The shadow is transformed accordingly so it follows the text. As it is made with a pseudo element
and the data attribute, it inherits the transforms form it's parent (the H1 tag).

https://riptutorial.com/ 20

http://codepen.io/web-tiki/pen/azeKNy
http://codepen.io/web-tiki/pen/azeKNy

The white "light" is made with a pseudo element on the #title element. It is skewed and uses
border-radius for the rounded corner.

Read 3D Transforms online: https://riptutorial.com/css/topic/2446/3d-transforms

https://riptutorial.com/ 21

https://riptutorial.com/css/topic/2446/3d-transforms

Chapter 4: Animations

Syntax

transition: <property> <duration> <timing-function> <delay>;•
@keyframes <identifier>•
[[from | to | <percentage>] [, from | to | <percentage>]* block]*•

Parameters

Transition

Parameter Details

property
Either the CSS property to transition on, or all, which specifies all
transition-able properties.

duration Transition time, either in seconds or milliseconds.

timing-function
Specifies a function to define how intermediate values for properties are
computed. Common values are ease, linear, and step-end. Check out the
easing function cheat-sheet for more.

delay
Amount of time, in seconds or milliseconds, to wait before playing the
animation.

@keyframes

[from | to |
<percentage>]

You can either specify a set time with a percentage value, or two
percentage values, ie 10%, 20%, for a period of time where the keyframe's
set attributes are set.

block Any amount of CSS attributes for the keyframe.

Examples

Animations with the transition property

Useful for simple animations, the CSS transition property allows number-based CSS properties to
animate between states.

https://riptutorial.com/ 22

http://easings.net/

Example

.Example{
 height: 100px;
 background: #fff;
}

.Example:hover{
 height: 120px;
 background: #ff0000;
}

View Result

By default, hovering over an element with the .Example class would immediately cause the
element's height to jump to 120px and its background color to red (#ff0000).

By adding the transition property, we can cause these changes to occur over time:

.Example{
 ...
 transition: all 400ms ease;
}

View Result

The all value applies the transition to all compatible (numbers-based) properties. Any compatible
property name (such as height or top) can be substituted for this keyword.

400ms specifies the amount of time the transition takes. In this case, the element's change in height
will take 400 milliseconds to complete.

Finally, the value ease is the animation function, which determines how the animation is played.
ease means start slow, speed up, then end slow again. Other values are linear, ease-out, and ease-
in.

Cross-Browser Compatibility

The transition property is generally well-supported across all major browsers, excepting IE 9. For
earlier versions of Firefox and Webkit-based browsers, use vendor prefixes like so:

.Example{
 transition: all 400ms ease;
 -moz-transition: all 400ms ease;
 -webkit-transition: all 400ms ease;
}

https://riptutorial.com/ 23

https://jsfiddle.net/0kcm6rwo/
https://jsfiddle.net/v2j4ggue/1/

Note: The transition property can animate changes between any two numerical values,
regardless of unit. It can also transition between units, such as 100px to 50vh. However, it cannot
transition between a number and a default or automatic value, such as transitioning an element's
height from 100px to auto.

Increasing Animation Performance Using the `will-change` Attribute

When creating animations and other GPU-heavy actions, it's important to understand the will-
change attribute.

Both CSS keyframes and the transition property use GPU acceleration. Performance is increased
by offloading calculations to the device's GPU. This is done by creating paint layers (parts of the
page that are individually rendered) that are offloaded to the GPU to be calculated. The will-
change property tells the browser what will animate, allowing the browser to create smaller paint
areas, thus increasing performance.

The will-change property accepts a comma-separated list of properties to be animated. For
example, if you plan on transforming an object and changing its opacity, you would specify:

.Example{
 ...
 will-change: transform, opacity;
}

Note: Use will-change sparingly. Setting will-change for every element on a page can cause
performance problems, as the browser may attempt to create paint layers for every element,
significantly increasing the amount of processing done by the GPU.

Animations with keyframes

For multi-stage CSS animations, you can create CSS @keyframes. Keyframes allow you to define
multiple animation points, called a keyframe, to define more complex animations.

Basic Example

In this example, we'll make a basic background animation that cycles between all colors.

@keyframes rainbow-background {
 0% { background-color: #ff0000; }
 8.333% { background-color: #ff8000; }
 16.667% { background-color: #ffff00; }
 25.000% { background-color: #80ff00; }
 33.333% { background-color: #00ff00; }
 41.667% { background-color: #00ff80; }
 50.000% { background-color: #00ffff; }
 58.333% { background-color: #0080ff; }
 66.667% { background-color: #0000ff; }
 75.000% { background-color: #8000ff; }
 83.333% { background-color: #ff00ff; }

https://riptutorial.com/ 24

 91.667% { background-color: #ff0080; }
 100.00% { background-color: #ff0000; }
}

.RainbowBackground {
 animation: rainbow-background 5s infinite;
}

View Result

There's a few different things to note here. First, the actual @keyframes syntax.

@keyframes rainbow-background{

This sets the name of the animation to rainbow-background.

0% { background-color: #ff0000; }

This is the definition for a keyframe within the animation. The first part, the 0% in the case, defines
where the keyframe is during the animation. The 0% implies it is 0% of the total animation time from
the beginning.

The animation will automatically transition between keyframes. So, by setting the next background
color at 8.333%, the animation will smoothly take 8.333% of the time to transition between those
keyframes.

.RainbowBackground {
 animation: rainbow-background 5s infinite;
}

This code attaches our animation to all elements which have the .RainbowBackground class.

The actual animation property takes the following arguments.

animation-name: The name of our animation. In this case, rainbow-background•
animation-duration: How long the animation will take, in this case 5 seconds.•
animation-iteration-count (Optional): The number of times the animation will loop. In this
case, the animation will go on indefinitely. By default, the animation will play once.

•

animation-delay (Optional): Specifies how long to wait before the animation starts. It
defaults to 0 seconds, and can take negative values. For example, -2s would start the
animation 2 seconds into its loop.

•

animation-timing-function (Optional): Specifies the speed curve of the animation. It
defaults to ease, where the animation starts slow, gets faster and ends slow.

•

In this particular example, both the 0% and 100% keyframes specify { background-color: #ff0000; }.
Wherever two or more keyframes share a state, one may specify them in a single statement. In
this case, the two 0% and 100% lines could be replaced with this single line:

0%, 100% { background-color: #ff0000; }

https://riptutorial.com/ 25

https://jsfiddle.net/s9m3od3p/6/

Cross-browser compatibility

For older WebKit-based browsers, you'll need to use the vendor prefix on both the @keyframes
declaration and the animation property, like so:

@-webkit-keyframes{}

-webkit-animation: ...

Syntax Examples

Our first syntax example shows the animation shorthand property using all of the available
properties/parameters:

 animation: 3s ease-in 1s 2 reverse both
paused slidein;
 /* duration | timing-function | delay | iteration-count | direction | fill-mode |
play-state | name */

Our second example is a little more simple, and shows that some properties can be omitted:

 animation: 3s linear 1s slidein;
 /* duration | timing-function | delay | name */

Our third example shows the most minimal declaration. Note that the animation-name and
animation-duration must be declared:

 animation: 3s slidein;
 /* duration | name */

It's also worth mentioning that when using the animation shorthand the order of the properties
makes a difference. Obviously the browser may confuse your duration with your delay.

If brevity isn't your thing, you can also skip the shorthand property and write out each property
individually:

animation-duration: 3s;
animation-timing-function: ease-in;
animation-delay: 1s;
animation-iteration-count: 2;
animation-direction: reverse;
animation-fill-mode: both;
animation-play-state: paused;
animation-name: slidein;

Read Animations online: https://riptutorial.com/css/topic/590/animations

https://riptutorial.com/ 26

https://riptutorial.com/css/topic/590/animations

Chapter 5: Backgrounds

Introduction

With CSS you can set colors, gradients, and images as the background of an element.

It is possible to specify various combinations of images, colors, and gradients, and adjust the size,
positioning, and repetition (among others) of these.

Syntax

background-color: color | transparent | initial | inherit;•
background-image: url | none | initial | inherit;•
background-position: value;•
background-size: <bg-size> [<bg-size>]•
<bg-size>: auto | length | cover | contain | initial | inherit;•
background-repeat: repeat | repeat-x | repeat-y | no-repeat | initial | inherit;•
background-origin: padding-box | border-box | content-box | initial | inherit;•
background-clip: border-box | padding-box | content-box | initial | inherit;•
background-attachment: scroll | fixed | local | initial | inherit;•
background: bg-color bg-image position / bg-size bg-repeat bg-origin bg-clip bg-attachment
initial | inherit;

•

Remarks

CSS3 gradients will not work on versions of Internet Explorer less than 10.•

Examples

Background Color

The background-color property sets the background color of an element using a color value or
through keywords, such as transparent, inherit or initial.

transparent, specifies that the background color should be transparent. This is default.•

inherit, inherits this property from its parent element.•

initial, sets this property to its default value.•

This can be applied to all elements, and ::first-letter/::first-line pseudo-elements.

Colors in CSS can be specified by different methods.

https://riptutorial.com/ 27

http://www.riptutorial.com/css/topic/911/pseudo-elements
http://www.riptutorial.com/css/topic/644/colors

Color names

CSS

div {
 background-color: red; /* red */
}

HTML

<div>This will have a red background</div>

The example used above is one of several ways that CSS has to represent a single color.•

Hex color codes

Hex code is used to denote RGB components of a color in base-16 hexadecimal notation. #ff0000,
for example, is bright red, where the red component of the color is 256 bits (ff) and the
corresponding green and blue portions of the color is 0 (00).

If both values in each of the three RGB pairings (R, G, and B) are the same, then the color code
can be shortened into three characters (the first digit of each pairing). #ff0000 can be shortened to
#f00, and #ffffff can be shortened to #fff.

Hex notation is case-insensitive.

body {
 background-color: #de1205; /* red */
}

.main {
 background-color: #00f; /* blue */
}

RGB / RGBa

Another way to declare a color is to use RGB or RGBa.

RGB stands for Red, Green and Blue, and requires of three separate values between 0 and 255,
put between brackets, that correspond with the decimal color values for respectively red, green
and blue.

RGBa allows you to add an additional alpha parameter between 0.0 and 1.0 to define opacity.

header {
 background-color: rgb(0, 0, 0); /* black */
}

https://riptutorial.com/ 28

footer {
 background-color: rgba(0, 0, 0, 0.5); /* black with 50% opacity */
}

HSL / HSLa

Another way to declare a color is to use HSL or HSLa and is similar to RGB and RGBa.

HSL stands for hue, saturation, and lightness, and is also often called HLS:

Hue is a degree on the color wheel (from 0 to 360).•
Saturation is a percentage between 0% and 100%.•
Lightness is also a percentage between 0% and 100%.•

HSLa allows you to add an additional alpha parameter between 0.0 and 1.0 to define opacity.

li a {
 background-color: hsl(120, 100%, 50%); /* green */
}

#p1 {
 background-color: hsla(120, 100%, 50%, .3); /* green with 30% opacity */
}

Interaction with background-image

The following statements are all equivalent:

body {
 background: red;
 background-image: url(partiallytransparentimage.png);
}

body {
 background-color: red;
 background-image: url(partiallytransparentimage.png);
}

body {
 background-image: url(partiallytransparentimage.png);
 background-color: red;
}

body {
 background: red url(partiallytransparentimage.png);
}

They will all lead to the red color being shown underneath the image, where the parts of the image
are transparent, or the image is not showing (perhaps as a result of background-repeat).

https://riptutorial.com/ 29

Note that the following is not equivalent:

body {
 background-image: url(partiallytransparentimage.png);
 background: red;
}

Here, the value of background overrides your background-image.

For more info on the background property, see Background Shorthand

Background Image

The background-image property is used to specify a background image to be applied to all matched
elements. By default, this image is tiled to cover the entire element, excluding margin.

.myClass {
 background-image: url('/path/to/image.jpg');
}

To use multiple images as background-image, define comma separated url()

.myClass {
 background-image: url('/path/to/image.jpg'),
 url('/path/to/image2.jpg');
}

The images will stack according to their order with the first declared image on top of the others
and so on.

Value Result

url('/path/to/image.jpg')
Specify background image's path(s) or an image resource
specified with data URI schema (apostrophes can be omitted),
separate multiples by comma

none No background image

initial Default value

inherit Inherit parent's value

More CSS for Background Image

This following attributes are very useful and almost essential too.

background-size: xpx ypx | x% y%;
background-repeat: no-repeat | repeat | repeat-x | repeat-y;
background-position: left offset (px/%) right offset (px/%) | center center | left top | right
bottom;

https://riptutorial.com/ 30

http://www.riptutorial.com/css/example/3595/background-shorthand

Background Gradients

Gradients are new image types, added in CSS3. As an image, gradients are set with the
background-image property, or the background shorthand.

There are two types of gradient functions, linear and radial. Each type has a non-repeating variant
and a repeating variant:

linear-gradient()•
repeating-linear-gradient()•
radial-gradient()•
repeating-radial-gradient()•

linear-gradient()

A linear-gradient has the following syntax

background: linear-gradient(<direction>?, <color-stop-1>, <color-stop-2>, ...);

Value Meaning

<direction>

Could be an argument like to top, to bottom, to right or to left; or an angle
as 0deg, 90deg... . The angle starts from to top and rotates clockwise. Can be
specified in deg, grad, rad, or turn. If omitted, the gradient flows from top to
bottom

<color-stop-
list>

List of colors, optionally followed each one by a percentage or length to
display it at. For example, yellow 10%, rgba(0,0,0,.5) 40px, #fff 100%...

For example, this creates a linear gradient that starts from the right and transitions from red to blue

.linear-gradient {
 background: linear-gradient(to left, red, blue); /* you can also use 270deg */
}

You can create a diagonal gradient by declaring both a horizontal and vertical starting position.

.diagonal-linear-gradient {
 background: linear-gradient(to left top, red, yellow 10%);
}

It is possible to specify any number of color stops in a gradient by separating them with commas.
The following examples will create a gradient with 8 color stops

.linear-gradient-rainbow {
 background: linear-gradient(to left, red, orange, yellow, green, blue, indigo, violet)
}

https://riptutorial.com/ 31

http://www.riptutorial.com/css/example/2189/background-image
https://www.w3.org/TR/css3-values/#angles
https://www.w3.org/TR/css3-values/#deg
https://www.w3.org/TR/css3-values/#grad
https://www.w3.org/TR/css3-values/#rad
https://www.w3.org/TR/css3-values/#turn
https://www.w3.org/TR/css3-values/#lengths

radial-gradient()

.radial-gradient-simple {
 background: radial-gradient(red, blue);
}

.radial-gradient {
 background: radial-gradient(circle farthest-corner at top left, red, blue);
}

Value Meaning

circle Shape of gradient. Values are circle or ellipse, default is ellipse.

farthest-
corner

Keywords describing how big the ending shape must be. Values are closest-
side, farthest-side, closest-corner, farthest-corner

top left
Sets the position of the gradient center, in the same way as background-
position.

Repeating gradients

Repeating gradient functions take the same arguments as the above examples, but tile the
gradient across the background of the element.

.bullseye {
 background: repeating-radial-gradient(red, red 10%, white 10%, white 20%);
}
.warning {
 background: repeating-linear-gradient(-45deg, yellow, yellow 10%, black 10%, black 20%);
}

Value Meaning

-45deg
Angle unit. The angle starts from to top and rotates clockwise. Can be specified in
deg, grad, rad, or turn.

to left
Direction of gradient, default is to bottom. Syntax: to [y-axis(top OR bottom)] [x-
axis(left OR right)] ie to top right

yellow
10%

Color, optionally followed by a percentage or length to display it at. Repeated two
or more times.

Note that HEX, RGB, RGBa, HSL, and HSLa color codes may be used instead of color names.
Color names were used for the sake of illustration. Also note that the radial-gradient syntax is
much more complex than linear-gradient, and a simplified version is shown here. For a full

https://riptutorial.com/ 32

https://www.w3.org/TR/css3-values/#angles
https://www.w3.org/TR/css3-values/#deg
https://www.w3.org/TR/css3-values/#grad
https://www.w3.org/TR/css3-values/#rad
https://www.w3.org/TR/css3-values/#turn

explanation and specs, see the MDN Docs

Background Shorthand

The background property can be used to set one or more background related properties:

Value Description
CSS
Ver.

background-
image Background image to use 1+

background-
color Background color to apply 1+

background-
position Background image's position 1+

background-size Background image's size 3+

background-
repeat How to repeat background image 1+

background-
origin

How the background is positioned (ignored when background-
attachment is fixed)

3+

background-clip
How the background is painted relative to the content-box, border-
box, or the padding-box

3+

background-
attachment

How the background image behaves, whether it scrolls along with
its containing block or has a fixed position within the viewport

1+

initial Sets the property to value to default 3+

inherit Inherits property value from parent 2+

The order of the values does not matter and every value is optional

Syntax

The syntax of the background shorthand declaration is:

background: [<background-image>] [<background-color>] [<background-position>]/[<background-
size>] [<background-repeat>] [<background-origin>] [<background-clip>] [<background-
attachment>] [<initial|inherit>];

Examples

background: red;

https://riptutorial.com/ 33

https://developer.mozilla.org/en-US/docs/Web/CSS/radial-gradient

Simply setting a background-color with the redvalue.

background: border-box red;

Setting a background-clip to border-box and a background-color to red.

background: no-repeat center url("somepng.jpg");

Sets a background-repeat to no-repeat, background-origin to center and a background-image to an
image.

background: url('pattern.png') green;

In this example, the background-color of the element would be set to green with pattern.png, if it is
available, overlayed on the colour, repeating as often as necessary to fill the element. If
pattern.png includes any transparency then the green colour will be visible behind it.

background: #000000 url("picture.png") top left / 600px auto no-repeat;

In this example we have a black background with an image 'picture.png' on top, the image does
not repeat in either axis and is positioned in the top left corner. The / after the position is to be
able to include the size of the background image which in this case is set as 600px width and auto
for the height. This example could work well with a feature image that can fade into a solid colour.

NOTE: Use of the shorthand background property resets all previously set background
property values, even if a value is not given. If you wish only to modify a background
property value previously set, use a longhand property instead.

Background Position

The background-position property is used to specify the starting position for a background image or
gradient

.myClass {
 background-image: url('path/to/image.jpg');
 background-position: 50% 50%;
}

The position is set using an X and Y co-ordinate and be set using any of the units used within
CSS.

Unit Description

value%
value%

A percentage for the horizontal offset is relative to (width of background
positioning area - width of background image).
A percentage for the vertical offset is relative to (height of background
positioning area - height of background image)
The size of the image is the size given by background-size.

https://riptutorial.com/ 34

https://drafts.csswg.org/css-backgrounds-3/#background-position

Unit Description

valuepx
valuepx

Offsets background image by a length given in pixels relative to the top left of
the background positioning area

Units in CSS can be specified by different methods (see here).

Longhand Background Position Properties

In addition to the shorthand property above, one can also use the longhand background properties
background-position-x and background-position-y. These allow you to control the x or y positions
separately.

NOTE: This is supported in all browsers except Firefox (versions 31-48) 2. Firefox 49,
to be released September 2016, will support these properties. Until then, there is a
Firefox hack within this Stack Overflow answer.

Background Attachment

The background-attachment property sets whether a background image is fixed or scrolls with the
rest of the page.

body {
 background-image: url('img.jpg');
 background-attachment: fixed;
}

Value Description

scroll The background scrolls along with the element. This is default.

fixed The background is fixed with regard to the viewport.

local The background scrolls along with the element's contents.

initial Sets this property to its default value.

inherit Inherits this property from its parent element.

Examples

background-attachment: scroll

The default behaviour, when the body is scrolled the background scrolls with it:

https://riptutorial.com/ 35

http://www.riptutorial.com/css/topic/864/length-units
http://caniuse.com/#search=background-position-x
http://stackoverflow.com/questions/14844407/background-position-y-doesnt-work-in-firefox-via-css/29282573#29282573
http://stackoverflow.com/questions/14844407/background-position-y-doesnt-work-in-firefox-via-css/29282573#29282573

body {
 background-image: url('image.jpg');
 background-attachment: scroll;
}

background-attachment: fixed

The background image will be fixed and will not move when the body is scrolled:

body {
 background-image: url('image.jpg');
 background-attachment: fixed;
}

background-attachment: local

The background image of the div will scroll when the contents of the div is scrolled.

div {
 background-image: url('image.jpg');
 background-attachment: local;
}

Background Repeat

The background-repeat property sets if/how a background image will be repeated.

By default, a background-image is repeated both vertically and horizontally.

div {
 background-image: url("img.jpg");
 background-repeat: repeat-y;
}

Here's how a background-repeat: repeat-y looks like:

https://riptutorial.com/ 36

Background Color with Opacity

If you set opacity on an element it will affect all its child elements. To set an opacity just on the
background of an element you will have to use RGBA colors. Following example will have a black
background with 0.6 opacity.

/* Fallback for web browsers that don't support RGBa */
background-color: rgb(0, 0, 0);

/* RGBa with 0.6 opacity */
background-color: rgba(0, 0, 0, 0.6);

/* For IE 5.5 - 7*/
filter: progid:DXImageTransform.Microsoft.gradient(startColorstr=#99000000,
endColorstr=#99000000);

/* For IE 8*/
-ms-filter: "progid:DXImageTransform.Microsoft.gradient(startColorstr=#99000000,
endColorstr=#99000000)";

Multiple Background Image

In CSS3, we can stack multiple background in the same element.

#mydiv {

https://riptutorial.com/ 37

http://i.stack.imgur.com/37rSv.png

 background-image: url(img_1.png), /* top image */
 url(img_2.png), /* middle image */
 url(img_3.png); /* bottom image */
 background-position: right bottom,
 left top,
 right top;
 background-repeat: no-repeat,
 repeat,
 no-repeat;
}

Images will be stacked atop one another with the first background on top and the last background
in the back. img_1 will be on top, the img_2 and img_3 is on bottom.

We can also use background shorthand property for this:

#mydiv {
 background: url(img_1.png) right bottom no-repeat,
 url(img_2.png) left top repeat,
 url(img_3.png) right top no-repeat;
}

We can also stack images and gradients:

#mydiv {
 background: url(image.png) right bottom no-repeat,
 linear-gradient(to bottom, #fff 0%,#000 100%);
}

Demo•

The background-origin property

The background-origin property specifies where the background image is positioned.

Note: If the background-attachment property is set to fixed, this property has no effect.

Default value: padding-box

Possible values:

padding-box - The position is relative to the padding box•
border-box - The position is relative to the border box•
content-box - The position is relative to the content box•
initial•
inherit•

CSS

.example {
 width: 300px;
 border: 20px solid black;
 padding: 50px;

https://riptutorial.com/ 38

https://jsfiddle.net/z30up2un/

 background: url(https://static.pexels.com/photos/6440/magazines-desk-work-workspace-
medium.jpg);
 background-repeat: no-repeat;
}

.example1 {}

.example2 { background-origin: border-box; }

.example3 { background-origin: content-box; }

HTML

<p>No background-origin (padding-box is default):</p>

<div class="example example1">
 <h2>Lorem Ipsum Dolor</h2>
 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod
tincidunt ut laoreet dolore magna aliquam erat volutpat.</p>
 <p>Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis
nisl ut aliquip ex ea commodo consequat.</p>
</div>

<p>background-origin: border-box:</p>
<div class="example example2">
 <h2>Lorem Ipsum Dolor</h2>
 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod
tincidunt ut laoreet dolore magna aliquam erat volutpat.</p>
 <p>Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis
nisl ut aliquip ex ea commodo consequat.</p>
</div>

<p>background-origin: content-box:</p>
<div class="example example3">
 <h2>Lorem Ipsum Dolor</h2>
 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod
tincidunt ut laoreet dolore magna aliquam erat volutpat.</p>
 <p>Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis
nisl ut aliquip ex ea commodo consequat.</p>
</div>

Result:

https://riptutorial.com/ 39

More:

https://www.w3.org/TR/css3-background/#the-background-origin

https://developer.mozilla.org/en-US/docs/Web/CSS/background-origin

Background Clip

Definition and Usage: The background-clip property specifies the painting area of the background.

Default value: border-box

Values

border-box•

https://riptutorial.com/ 40

http://i.stack.imgur.com/ycz1z.png
https://www.w3.org/TR/css3-background/#the-background-origin
https://developer.mozilla.org/en-US/docs/Web/CSS/background-origin

is the default value. This allows the background to extend all the way to the outside edge of
the element's border.
padding-box clips the background at the outside edge of the element's padding and does not
let it extend into the border;

•

content-box clips the background at the edge of the content box.•
inherit applies the setting of the parent to the selected element.•

CSS

.example {
 width: 300px;
 border: 20px solid black;
 padding: 50px;
 background: url(https://static.pexels.com/photos/6440/magazines-desk-work-workspace-
medium.jpg);
 background-repeat: no-repeat;
}

.example1 {}

.example2 { background-origin: border-box; }

.example3 { background-origin: content-box; }

HTML

<p>No background-origin (padding-box is default):</p>

<div class="example example1">
 <h2>Lorem Ipsum Dolor</h2>
 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod
tincidunt ut laoreet dolore magna aliquam erat volutpat.</p>
 <p>Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis
nisl ut aliquip ex ea commodo consequat.</p>
</div>

<p>background-origin: border-box:</p>
<div class="example example2">
 <h2>Lorem Ipsum Dolor</h2>
 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod
tincidunt ut laoreet dolore magna aliquam erat volutpat.</p>
 <p>Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis
nisl ut aliquip ex ea commodo consequat.</p>
</div>

<p>background-origin: content-box:</p>
<div class="example example3">
 <h2>Lorem Ipsum Dolor</h2>
 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod
tincidunt ut laoreet dolore magna aliquam erat volutpat.</p>
 <p>Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis
nisl ut aliquip ex ea commodo consequat.</p>
</div>

Background Size

https://riptutorial.com/ 41

General overview

The background-size property enables one to control the scaling of the background-image. It takes up
to two values, which determine the scale/size of the resulting image in vertical and and horizontal
direction. If the property is missing, its deemed auto in both width and height.

auto will keep the image's aspect ratio, if it can be determined. The height is optional and can be
considered auto. Therefore, on a 256 px × 256 px image, all the following background-size settings
would yield an image with height and width of 50 px:

background-size: 50px;
background-size: 50px auto; /* same as above */
background-size: auto 50px;
background-size: 50px 50px;

So if we started with the following picture (which has the mentioned size of 256 px × 256 px),

we'll end up with a 50 px × 50 px on the user's screen, contained in the background of our
element:

One can also use percentage values to scale the image with respect of the element. The following
example would yield a 200 px × 133 px drawn image:

#withbackground {
 background-image: url(to/some/background.png);

 background-size: 100% 66%;

 width: 200px;
 height: 200px;

 padding: 0;
 margin: 0;

https://riptutorial.com/ 42

https://www.w3.org/TR/2014/CR-css3-background-20140909/#the-background-size
http://i.stack.imgur.com/Htt64.png
http://i.stack.imgur.com/0Bay0.png

}

The behaviour depends on the background-origin.

Keeping the aspect ratio

The last example in the previos section lost its original aspect ratio. The circle got into an ellipse,
the square into a rectangle, the triangle into another triangle.

The length or percentage approach isn't flexible enough to keep the aspect ratio at all times. auto
doesn't help, since you might not know which dimension of your element will be larger. However,
to cover certain areas with an image (and correct aspect ratio) completely or to contain an image
with correct aspect ratio completely in a background area, the values, contain and cover provide
the additional functionality.

Eggsplanation for contain and cover

Sorry for the bad pun, but we're going to use a picture of the day by Biswarup Ganguly for
demonstration. Lets say that this is your screen, and the gray area is outside of your visible
screen. For demonstration, We're going to assume a 16 × 9 ratio.

We want to use the aforementioned picture of the day as a background. However, we cropped the
image to 4x3 for some reason. We could set the background-size property to some fixed length, but
we will focus on contain and cover. Note that I also assume that we didn't mangle the width and/or
height of body.

https://riptutorial.com/ 43

http://i.stack.imgur.com/VYOt6.png
https://www.w3.org/TR/2014/CR-css3-background-20140909/#the-background-origin
https://commons.wikimedia.org/wiki/File:Chicken_Egg_without_Eggshell_5859.jpg

contain

contain

Scale the image, while preserving its intrinsic aspect ratio (if any), to the largest size
such that both its width and its height can fit inside the background positioning area.

This makes sure that the background image is always completely contained in the background
positioning area, however, there could be some empty space filled with your background-color in
this case:

cover

cover

Scale the image, while preserving its intrinsic aspect ratio (if any), to the smallest size
such that both its width and its height can completely cover the background positioning
area.

This makes sure that the background image is covering everything. There will be no visible
background-color, however depending on the screen's ratio a great part of your image could be cut
off:

https://riptutorial.com/ 44

Demonstration with actual code

div > div {
 background-image: url(http://i.stack.imgur.com/r5CAq.jpg);
 background-repeat: no-repeat;
 background-position: center center;
 background-color: #ccc;
 border: 1px solid;
 width: 20em;
 height: 10em;
}
div.contain {
 background-size: contain;
}
div.cover {
 background-size: cover;
}
/**
 Additional styles for the explanation boxes
***/

div > div {
 margin: 0 1ex 1ex 0;
 float: left;
}
div + div {
 clear: both;
 border-top: 1px dashed silver;
 padding-top:1ex;
}
div > div::after {
 background-color: #000;
 color: #fefefe;
 margin: 1ex;
 padding: 1ex;
 opacity: 0.8;
 display: block;
 width: 10ex;
 font-size: 0.7em;
 content: attr(class);
}

https://riptutorial.com/ 45

<div>
 <div class="contain"></div>
 <p>Note the grey background. The image does not cover the whole region, but it's fully
contained.
 </p>
</div>
<div>
 <div class="cover"></div>
 <p>Note the ducks/geese at the bottom of the image. Most of the water is cut, as well as a
part of the sky. You don't see the complete image anymore, but neither do you see any
background color; the image covers all of the <code><div></code>.</p>
</div>

background-blend-mode Property

.my-div {
 width: 300px;
 height: 200px;
 background-size: 100%;
 background-repeat: no-repeat;
 background-image: linear-gradient(to right, black 0%,white 100%),
url('https://static.pexels.com/photos/54624/strawberry-fruit-red-sweet-54624-medium.jpeg');
 background-blend-mode:saturation;
}

<div class="my-div">Lorem ipsum</div>

See result here: https://jsfiddle.net/MadalinaTn/y69d28Lb/

CSS Syntax: background-blend-mode: normal | multiply | screen | overlay | darken | lighten | color-
dodge | saturation | color | luminosity;

Read Backgrounds online: https://riptutorial.com/css/topic/296/backgrounds

https://riptutorial.com/ 46

http://i.stack.imgur.com/Gxfig.png
https://jsfiddle.net/MadalinaTn/y69d28Lb/
https://riptutorial.com/css/topic/296/backgrounds

Chapter 6: Block Formatting Contexts

Remarks

[A block formatting context is a part of a visual CSS rendering of a Web page. It is the
region in which the layout of block boxes occurs and in which floats interact with each
other.][1]

[1]: https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Block_formatting_context MDN

Examples

Using the overflow property with a value different to visible

img{
 float:left;
 width:100px;
 margin:0 10px;
}
.div1{
 background:#f1f1f1;
 /* does not create block formatting context */
}
.div2{
 background:#f1f1f1;
 overflow:hidden;
 /* creates block formatting context */
}

https://riptutorial.com/ 47

https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Block_formatting_context

https://jsfiddle.net/MadalinaTn/qkwwmu6m/2/

Using the overflow property with a value different to visible (its default) will create a
new block formatting context. This is technically necessary — if a float intersected with
the scrolling element it would forcibly rewrap the content.

This example that show how a number of paragraphs will interact with a floated image is similar to
this example, on css-tricks.com.

2: https://developer.mozilla.org/en-US/docs/Web/CSS/overflow MDN

Read Block Formatting Contexts online: https://riptutorial.com/css/topic/5069/block-formatting-
contexts

https://riptutorial.com/ 48

https://i.stack.imgur.com/ceEkU.png
https://jsfiddle.net/MadalinaTn/qkwwmu6m/2/
https://css-tricks.com/almanac/properties/o/overflow/
https://css-tricks.com/almanac/properties/o/overflow/
https://css-tricks.com/almanac/properties/o/overflow/
https://css-tricks.com/almanac/properties/o/overflow/
https://css-tricks.com/almanac/properties/o/overflow/
https://developer.mozilla.org/en-US/docs/Web/CSS/overflow
https://riptutorial.com/css/topic/5069/block-formatting-contexts
https://riptutorial.com/css/topic/5069/block-formatting-contexts

Chapter 7: Border

Syntax

border•

border: border-width border-style border-color | initial | inherit;•

border-top: border-width border-style border-color | initial | inherit;•

border-bottom: border-width border-style border-color | initial | inherit;•

border-left: border-width border-style border-color | initial | inherit;•

border-right: border-width border-style border-color | initial | inherit;•

border-style•

border-style: 1-4 none | hidden | dotted | dashed | solid | double | groove | ridge | inset |
outset | initial | inherit;

•

border-radius•

border-radius: 1-4 length | % / 1-4 length | % | initial | inherit;•

border-top-left-radius: length | % [length | %] | initial | inherit;•

border-top-right-radius: length | % [length | %] | initial | inherit;•

border-bottom-left-radius: length | % [length | %] | initial | inherit;•

border-bottom-right-radius: length | % [length | %] | initial | inherit;•

border-image•

border-image: border-image-source border-image-slice [border-image-width [border-image-
outset]] border-image-repeat

•

border-image-source: none | image;•

border-image-slice: 1-4 number | percentage [fill]•

border-image-repeat: 1-2 stretch | repeat | round | space•

border-collapse•

border-collapse: separate | collapse | initial | inherit•

Remarks

https://riptutorial.com/ 49

Related properties:

border•

border-bottom•

border-bottom-color•

border-bottom-left-radius•

border-bottom-right-radius•

border-bottom-style•

border-bottom-width•

border-color•

border-image•

border-image-outset•

border-image-repeat•

border-image-slice•

border-image-source•

border-image-width•

border-left•

border-left-color•

border-left-style•

border-left-width•

border-radius•

border-right•

border-right-color•

border-right-style•

border-right-width•

border-style•

border-top•

border-top-color•

https://riptutorial.com/ 50

https://developer.mozilla.org/en-US/docs/Web/CSS/border

border-top-left-radius•

border-top-right-radius•

border-top-style•

border-top-width•

border-width•

Examples

border-radius

The border-radius property allows you to change the shape of the basic box model.

Every corner of an element can have up to two values, for the vertical and horizontal radius of that
corner (for a maximum of 8 values).

The first set of values defines the horizontal radius. The optional second set of values, preceded
by a ‘/’ , defines the vertical radius. If only one set of values is supplied, it is used for both the
vertical and horizontal radius.

border-radius: 10px 5% / 20px 25em 30px 35em;

The 10px is the horizontal radius of the top-left-and-bottom-right. And the 5% is the horizontal radius
of the top-right-and-bottom-left. The other four values after '/' are the vertical radii for top-left, top-
right, bottom-right and bottom-left.

As with many CSS properties, shorthands can be used for any or all possible values. You can
therefore specify anything from one to eight values. The following shorthand allows you to set the
horizontal and vertical radius of every corner to the same value:

HTML:

<div class='box'></div>

CSS:

https://riptutorial.com/ 51

https://i.stack.imgur.com/FnIqF.png

.box {
 width: 250px;
 height: 250px;
 background-color: black;
 border-radius: 10px;
}

Border-radius is most commonly used to convert box elements into circles. By setting the border-
radius to half of the length of a square element, a circular element is created:

.circle {
 width: 200px;
 height: 200px;
 border-radius: 100px;
}

Because border-radius accepts percentages, it is common to use 50% to avoid manually
calculating the border-radius value:

.circle {
 width: 150px;
 height: 150px;
 border-radius: 50%;
}

If the width and height properties are not equal, the resulting shape will be an oval rather than a
circle.

Browser specific border-radius example:

 -webkit-border-top-right-radius: 4px;
 -webkit-border-bottom-right-radius: 4px;
 -webkit-border-bottom-left-radius: 0;
 -webkit-border-top-left-radius: 0;
 -moz-border-radius-topright: 4px;
 -moz-border-radius-bottomright: 4px;
 -moz-border-radius-bottomleft: 0;
 -moz-border-radius-topleft: 0;
 border-top-right-radius: 4px;
 border-bottom-right-radius: 4px;
 border-bottom-left-radius: 0;
 border-top-left-radius: 0;

border-style

The border-style property sets the style of an element's border. This property can have from one
to four values (for every side of the element one value.)

Examples:

border-style: dotted;

https://riptutorial.com/ 52

border-style: dotted solid double dashed;

border-style can also have the values none and hidden. They have the same effect, except hidden
works for border conflict resolution for <table> elements. In a <table> with multiple borders, none
has the lowest priority (meaning in a conflict, the border would show), and hidden has the highest
priority (meaning in a conflict, the border would not show).

border (shorthands)

In most cases you want to define several border properties (border-width, border-style and border-
color) for all sides of an element.

Instead of writing:

border-width: 1px;
border-style: solid;
border-color: #000;

You can simply write:

border: 1px solid #000;

These shorthands are also available for every side of an element: border-top, border-left, border-
right and border-bottom. So you can do:

border-top: 2px double #aaaaaa;

border-image

With the border-image property you have the possibility to set an image to be used instead of
normal border styles.

A border-image essentially consist of a

https://riptutorial.com/ 53

https://i.stack.imgur.com/gieW6.png

border-image-source: The path to the image to be used•
border-image-slice: Specifies the offset that is used to divide the image into nine regions
(four corners, four edges and a middle)

•

border-image-repeat: Specifies how the images for the sides and the middle of the border
image are scaled

•

Consider the following example wheras border.png is a image of 90x90 pixels:

border-image: url("border.png") 30 stretch;

The image will be split into nine regions with 30x30 pixels. The edges will be used as the corners
of the border while the side will be used in between. If the element is higher / wider than 30px this
part of the image will be stretched. The middle part of the image defaults to be transparent.

border-[left|right|top|bottom]

The border-[left|right|top|bottom] property is used to add a border to a specific side of an
element.

For example if you wanted to add a border to the left side of an element, you could do:

#element {
 border-left: 1px solid black;
}

border-collapse

The border-collapse property applies only to tables (and elements displayed as display: table or
inline-table) and sets whether the table borders are collapsed into a single border or detached as
in standard HTML.

table {
 border-collapse: separate; /* default */
 border-spacing: 2px; /* Only works if border-collapse is separate */
}

Also see Tables - border-collapse documentation entry

Multiple Borders

Using outline:

.div1{
 border: 3px solid black;
 outline: 6px solid blue;
 width: 100px;
 height: 100px;
 margin: 20px;
}

https://riptutorial.com/ 54

http://www.riptutorial.com/css/example/3456/border-collapse

Using box-shadow:

.div2{
 border: 5px solid green;
 box-shadow: 0px 0px 0px 4px #000;
 width: 100px;
 height: 100px;
 margin: 20px;
}

Using a pseudo element:

.div3 {
 position: relative;
 border: 5px solid #000;
 width: 100px;
 height: 100px;
 margin: 20px;
}
.div3:before {
 content: " ";
 position: absolute;
 border: 5px solid blue;
 z-index: -1;
 top: 5px;
 left: 5px;
 right: 5px;
 bottom: 5px;
}

http://jsfiddle.net/MadalinaTn/bvqpcohm/2/

Creating a multi-colored border using border-image

https://riptutorial.com/ 55

https://i.stack.imgur.com/lta3P.png
http://jsfiddle.net/MadalinaTn/bvqpcohm/2/

CSS

.bordered {
 border-image: linear-gradient(to right, red 20%, green 20%, green 40%, blue 40%, blue 60%,
maroon 60%, maroon 80%, chocolate 80%); /* gradient with required colors */
 border-image-slice: 1;
}

HTML

<div class='bordered'>Border on all sides</div>

The above example would produce a border that comprises of 5 different colors. The colors are
defined through a linear-gradient (you can find more information about gradients in the docs). You
can find more information about border-image-slice property in the border-image example in same
page.

(Note: Additional properties were added to the element for presentational purpose.)

You'd have noticed that the left border has only a single color (the start color of the gradient) while
the right border also has only a single color (the gradient's end color). This is because of the way
that border image property works. It is as though the gradient is applied to the entire box and then
the colors are masked from the padding and content areas, thus making it look as though only the
border has the gradient.

Which border(s) have a single color is dependant on the gradient definition. If the gradient is a to
right gradient, the left border would be the start color of the gradient and right border would be the
end color. If it was a to bottom gradient the top border would be the gradient's start color and
bottom border would be end color. Below is the output of a to bottom 5 colored gradient.

If the border is required only on specific sides of the element then the border-width property can be

https://riptutorial.com/ 56

http://www.riptutorial.com/css/example/2478/background-gradients
http://www.riptutorial.com/css/example/9699/border-image
http://www.riptutorial.com/css/example/9699/border-image
https://i.stack.imgur.com/YWzek.png
https://i.stack.imgur.com/6ihGO.png

used just like with any other normal border. For example, adding the below code would produce a
border only on the top of the element.

border-width: 5px 0px 0px 0px;

Note that, any element that has border-image property won't respect the border-radius (that is the
border won't curve). This is based on the below statement in the spec:

A box's backgrounds, but not its border-image, are clipped to the appropriate curve (as
determined by ‘background-clip’).

Read Border online: https://riptutorial.com/css/topic/2160/border

https://riptutorial.com/ 57

https://i.stack.imgur.com/wU0fE.png
https://riptutorial.com/css/topic/2160/border

Chapter 8: box-shadow

Syntax

box-shadow: none|h-shadow v-shadow blur spread color |inset|initial|inherit;•

Parameters

Parameters Details

inset
by default, the shadow is treated as a drop shadow. the inset keyword draws
the shadow inside the frame/border.

offset-x the horizontal distance

offset-y the vertical distance

blur-radius
0 by default. value cannot be negative. the bigger the value, the bigger and
lighter the shadow becomes.

spread-
radius

0 by default. positive values will cause the shadow to expand. negative values
will cause the shadow to shrink.

color
can be of various notations: a color keyword, hexadecimal, rgb(), rgba(),
hsl(), hsla()

Remarks

Browser Support:

Chrome 10.0•
IE 9.0•
Firefox 4.0 3.5 -moz•
Safari 5.1 3.1 -webkit-•
Opera 10.5•

Examples

drop shadow

JSFiddle: https://jsfiddle.net/UnsungHero97/80qod7aL/

HTML

https://riptutorial.com/ 58

https://jsfiddle.net/UnsungHero97/80qod7aL/

<div class="box_shadow"></div>

CSS

.box_shadow {
 -webkit-box-shadow: 0px 0px 10px -1px #444444;
 -moz-box-shadow: 0px 0px 10px -1px #444444;
 box-shadow: 0px 0px 10px -1px #444444;
}

inner drop shadow

HTML

<div class="box_shadow"></div>

CSS

.box_shadow {
 background-color: #1C90F3;
 width: 200px;
 height: 100px;
 margin: 50px;
 -webkit-box-shadow: inset 0px 0px 10px 0px #444444;
 -moz-box-shadow: inset 0px 0px 10px 0px #444444;
 box-shadow: inset 0px 0px 10px 0px #444444;
}

Result:

JSFiddle: https://jsfiddle.net/UnsungHero97/80qod7aL/1/

bottom-only drop shadow using a pseudo-element

JSFiddle: https://jsfiddle.net/UnsungHero97/80qod7aL/2/

HTML

<div class="box_shadow"></div>

CSS

https://riptutorial.com/ 59

https://i.stack.imgur.com/AMmgA.png
https://jsfiddle.net/UnsungHero97/80qod7aL/1/
https://jsfiddle.net/UnsungHero97/80qod7aL/2/

.box_shadow {
 background-color: #1C90F3;
 width: 200px;
 height: 100px;
 margin: 50px;
}

.box_shadow:after {
 content: "";
 width: 190px;
 height: 1px;
 margin-top: 98px;
 margin-left: 5px;
 display: block;
 position: absolute;
 z-index: -1;
 -webkit-box-shadow: 0px 0px 8px 2px #444444;
 -moz-box-shadow: 0px 0px 8px 2px #444444;
 box-shadow: 0px 0px 8px 2px #444444;
}

multiple shadows

JSFiddle: https://jsfiddle.net/UnsungHero97/80qod7aL/5/

HTML

<div class="box_shadow"></div>

CSS

.box_shadow {
 width: 100px;
 height: 100px;

https://riptutorial.com/ 60

https://i.stack.imgur.com/5n1ho.png
https://jsfiddle.net/UnsungHero97/80qod7aL/5/

 margin: 100px;
 box-shadow:
 -52px -52px 0px 0px #f65314,
 52px -52px 0px 0px #7cbb00,
 -52px 52px 0px 0px #00a1f1,
 52px 52px 0px 0px #ffbb00;
}

Read box-shadow online: https://riptutorial.com/css/topic/1746/box-shadow

https://riptutorial.com/ 61

http://i.stack.imgur.com/mBU1Q.png
https://riptutorial.com/css/topic/1746/box-shadow

Chapter 9: Browser Support & Prefixes

Parameters

Prefix Browser(s)

-webkit-
Google Chrome, Safari, newer versions of Opera 12 and up, Android, Blackberry
and UC browsers

-moz- Mozilla Firefox

-ms- Internet Explorer, Edge

-o-, -
xv-

Opera until version 12

-khtml- Konquerer

Remarks

Vendor prefixes are used to allow preview support for new CSS functionality where the
functionality is not yet recommended by the specification.

It is recommended that you do not use vendor prefixes in production
environments. These prefixes exist to test new functionality that is not yet finalized,
and behavior is inherently unexpected. Simply using prefixes does not grant browser
support for old browsers as you cannot guarantee the feature hasn't changed over time
to perform differently, and it could still be broken in those old browsers you claim to
support.

If supporting older browsers is important, you should instead consider using JavaScript
or other solutions to imitate the effects and truly guarantee support for old browsers.

Browsers will use their prefixes and ignore the properties they don't understand.

NOTE: Prefixes should always appear before the official, unprefixed syntax. Otherwise they would
be overwritten with the prefixed properties, which can be another implementation in the end.

If a browser supports both an unprefixed and prefixed version of a property, the most recent
property to be declared will take precedence.

Examples

Transitions

https://riptutorial.com/ 62

div {
 -webkit-transition: all 4s ease;
 -moz-transition: all 4s ease;
 -o-transition: all 4s ease;
 transition: all 4s ease;
}

Transform

div {
 -webkit-transform: rotate(45deg);
 -moz-transform: rotate(45deg);
 -ms-transform: rotate(45deg);
 -o-transform: rotate(45deg);
 transform: rotate(45deg);
}

Read Browser Support & Prefixes online: https://riptutorial.com/css/topic/1138/browser-support---
prefixes

https://riptutorial.com/ 63

https://riptutorial.com/css/topic/1138/browser-support---prefixes
https://riptutorial.com/css/topic/1138/browser-support---prefixes

Chapter 10: Cascading and Specificity

Remarks

CSS specificity intends to promote code conciseness by allowing an author to define some
general formatting rules for a broad set of elements, and then to override them for a certain
subset.

Examples

Cascading

Cascading and specificity are used together to determine the final value of a CSS styling property.
They also define the mechanisms for resolving conflicts in CSS rule sets.

CSS Loading order

Styles are read from the following sources, in this order:

User Agent stylesheet (The styles supplied by the browser vendor)1.
User stylesheet (The additional styling a user has set on his/her browser)2.
Author stylesheet (Author here means the creator of the webpage/website)

Maybe one or more .css files•
In the <style> element of the HTML document•

3.

Inline styles (In the style attribute on an HTML element)4.

The browser will lookup the corresponding style(s) when rendering an element.

How are conflicts resolved?

When only one CSS rule set is trying to set a style for an element, then there is no conflict, and
that rule set is used.

When multiple rule sets are found with conflicting settings, first the Specificty rules, and then the
Cascading rules are used to determine what style to use.

Example 1 - Specificity rules

.mystyle { color: blue; } /* specificity: 0, 0, 1, 0 */
div { color: red; } /* specificity: 0, 0, 0, 1 */

<div class="mystyle">Hello World</div>

https://riptutorial.com/ 64

What color will the text be? (hover to see the answer)

blue

First the specificity rules are applied, and the one with the highest specificity "wins".

Example 2 - Cascade rules with identical selectors

External css file

.class {
 background: #FFF;
}

Internal css (in HTML file)

<style>
.class {
 background: #000;
}
<style>

In this case, where you have identical selectors, the cascade kicks in, and determines that the last
one loaded "wins".

Example 3 - Cascade rules after Specificity rules

body > .mystyle { background-color: blue; } /* specificity: 0, 0, 1, 1 */
.otherstyle > div { background-color: red; } /* specificity: 0, 0, 1, 1 */

<body class="otherstyle">
 <div class="mystyle">Hello World</div>
</body>

What color will the background be?

red

After applying the specificity rules, there's still a conflict between blue and red, so the cascading
rules are applied on top of the specificity rules. Cascading looks at the load order of the rules,
whether inside the same .css file or in the collection of style sources. The last one loaded
overrides any earlier ones. In this case, the .otherstyle > div rule "wins".

A final note

Selector specificity always take precedence.•
Stylesheet order break ties.•
Inline styles trump everything.•

https://riptutorial.com/ 65

The !important declaration

The !important declaration is used to override the usual specificity in a style sheet by giving a
higher priority to a rule. Its usage is: property : value !important;

#mydiv {
 font-weight: bold !important; /* This property won't be overridden
 by the rule below */
}

#outerdiv #mydiv {
 font-weight: normal; /* #mydiv font-weight won't be set to normal
 even if it has a higher specificity because
 of the !important declaration above */
}

Avoiding the usage of !important is strongly recommended (unless absolutely necessary),
because it will disturb the natural flow of css rules which can bring uncertainty in your style sheet.
Also it is important to note that when multiple !important declarations are applied to the same rule
on a certain element, the one with the higher specificity will be the ona applied.

Here are some examples where using !important declaration can be justified:

If your rules shouldn't be overridden by any inline style of the element which is written inside
style attribute of the html element.

•

To give the user more control over the web accessibility, like increasing or decreasing size of
the font-size, by overriding the author style using !important.

•

For testing and debugging using inspect element.•

See also:

W3C - 6 Assigning property values, Cascading, and Inheritance -- 6.4.2 !important
rules

•

Calculating Selector Specificity

Each individual CSS Selector has its own specificity value. Every selector in a sequence increases
the sequence's overall specificity. Selectors fall into one of three different specificity groups: A, B
and c. When multiple selector sequences select a given element, the browser uses the styles
applied by the sequence with the highest overall specificity.

Group Comprised of Examples

A id selectors #foo

B
class selectors
attribute selectors
pseudo-classes

.bar
[title], [colspan="2"]
:hover, :nth-child(2)

type selectors div, li c

https://riptutorial.com/ 66

https://www.w3.org/TR/CSS22/cascade.html#important-rules
https://www.w3.org/TR/CSS22/cascade.html#important-rules

Group Comprised of Examples

pseudo-elements ::before, ::first-letter

Group A is the most specific, followed by Group B, then finally Group c.

The universal selector (*) and combinators (like > and ~) have no specificity.

Example 1: Specificity of various selector sequences

#foo #baz {} /* a=2, b=0, c=0 */

#foo.bar {} /* a=1, b=1, c=0 */

#foo {} /* a=1, b=0, c=0 */

.bar:hover {} /* a=0, b=2, c=0 */

div.bar {} /* a=0, b=1, c=1 */

:hover {} /* a=0, b=1, c=0 */

[title] {} /* a=0, b=1, c=0 */

.bar {} /* a=0, b=1, c=0 */

div ul + li {} /* a=0, b=0, c=3 */

p::after {} /* a=0, b=0, c=2 */

::before {} / a=0, b=0, c=1 */

::before {} /* a=0, b=0, c=1 */

div {} /* a=0, b=0, c=1 */

* {} /* a=0, b=0, c=0 */

Example 2: How specificity is used by the browser

Imagine the following CSS implementation:

#foo {
 color: blue;
}

.bar {
 color: red;
 background: black;
}

Here we have an ID selector which declares color as blue, and a class selector which declares
color as red and background as black.

An element with an ID of #foo and a class of .bar will be selected by both declarations. ID

https://riptutorial.com/ 67

selectors have a Group A specificity and class selectors have a Group B specificity. An ID selector
outweighs any number of class selectors. Because of this, color:blue; from the #foo selector and
the background:black; from the .bar selector will be applied to the element. The higher specificity of
the ID selector will cause the browser to ignore the .bar selector's color declaration.

Now imagine a different CSS implementation:

.bar {
 color: red;
 background: black;
}

.baz {
 background: white;
}

Here we have two class selectors; one of which declares color as red and background as black, and
the other declares background as white.

An element with both the .bar and .baz classes will be affected by both of these declarations,
however the problem we have now is that both .bar and .baz have an identical Group B specificity.
The cascading nature of CSS resolves this for us: as .baz is defined after .bar, our element ends
up with the red color from .bar but the white background from .baz.

Example 3: How to manipulate specificity

The last snippet from Example 2 above can be manipulated to ensure our .bar class selector's
color declaration is used instead of that of the .baz class selector.

.bar {} /* a=0, b=1, c=0 */

.baz {} /* a=0, b=1, c=0 */

The most common way to achieve this would be to find out what other selectors can be applied to
the .bar selector sequence. For example, if the .bar class was only ever applied to span elements,
we could modify the .bar selector to span.bar. This would give it a new Group C specificity, which
would override the .baz selector's lack thereof:

span.bar {} /* a=0, b=1, c=1 */
.baz {} /* a=0, b=1, c=0 */

However it may not always possible to find another common selector which is shared between any
element which uses the .bar class. Because of this, CSS allows us to duplicate selectors to
increase specificity. Instead of just .bar, we can use .bar.bar instead (See The grammar of
Selectors, W3C Recommendation). This still selects any element with a class of .bar, but now has
double the Group B specificity:

.bar.bar {} /* a=0, b=2, c=0 */

.baz {} /* a=0, b=1, c=0 */

https://riptutorial.com/ 68

https://www.w3.org/TR/css3-selectors/#grammar
https://www.w3.org/TR/css3-selectors/#grammar

!important and inline style declarations

The !important flag on a style declaration and styles declared by the HTML style attribute are
considered to have a greater specificity than any selector. If these exist, the style declaration they
affect will overrule other declarations regardless of their specificity. That is, unless you have more
than one declaration that contains an !important flag for the same property that apply to the same
element. Then, normal specificity rules will apply to those properties in reference to each other.

Because they completely override specificity, the use of !important is frowned upon in most use
cases. One should use it as little as possible. To keep CSS code efficient and maintainable in the
long run, it's almost always better to increase the specificity of the surrounding selector than to use
!important.

One of those rare exceptions where !important is not frowned upon, is when implementing generic
helper classes like a .hidden or .background-yellow class that are supposed to always override one
or more properties wherever they are encountered. And even then, you need to know what you're
doing. The last thing you want, when writing maintainable CSS, is to have !important flags
throughout your CSS.

A final note

A common misconception about CSS specificity is that the Group A, B and c values should be
combined with each other (a=1, b=5, c=1 => 151). This is not the case. If this were the case,
having 20 of a Group B or c selector would be enough to override a single Group A or B selector
respectively. The three groups should be regarded as individual levels of specificity. Specificity
cannot be represented by a single value.

When creating your CSS style sheet, you should maintain the lowest specificity as possible. If you
need to make the specificity a little higher to overwrite another method, make it higher but as low
as possible to make it higher. You shouldn't need to have a selector like this:

body.page header.container nav div#main-nav li a {}

This makes future changes harder and pollutes that css page.

You can calculate the specificity of your selector here

More complex specificity example

div {
 font-size: 7px;
 border: 3px dotted pink;
 background-color: yellow;
 color: purple;
}

body.mystyle > div.myotherstyle {
 font-size: 11px;

https://riptutorial.com/ 69

http://specificity.keegan.st/

 background-color: green;
}

#elmnt1 {
 font-size: 24px;
 border-color: red;
}

.mystyle .myotherstyle {
 font-size: 16px;
 background-color: black;
 color: red;
}

<body class="mystyle">
 <div id="elmnt1" class="myotherstyle">
 Hello, world!
 </div>
</body>

What borders, colors, and font-sizes will the text be?

font-size:

font-size: 24;, since #elmnt1 rule set has the highest specificity for the <div> in
question, every property here is set.

border:

border: 3px dotted red;. The border-color red is taken from #elmnt1 rule set, since it has
the highest specificity. The other properties of the border, border-thickness, and
border-style are from the div rule set.

background-color:

background-color: green;. The background-color is set in the div, body.mystyle >
div.myotherstyle, and .mystyle .myotherstyle rule sets. The specificities are (0, 0, 1) vs.
(0, 2, 2) vs. (0, 2, 0), so the middle one "wins".

color:

color: red;. The color is set in both the div and .mystyle .myotherstyle rule sets. The
latter has the higher specificity of (0, 2, 0) and "wins".

Read Cascading and Specificity online: https://riptutorial.com/css/topic/450/cascading-and-
specificity

https://riptutorial.com/ 70

https://riptutorial.com/css/topic/450/cascading-and-specificity
https://riptutorial.com/css/topic/450/cascading-and-specificity

Chapter 11: Centering

Examples

Using CSS transform

CSS transforms are based on the size of the elements so if you don't know how tall or wide your
element is, you can position it absolutely 50% from the top and left of a relative container and
translate it by 50% left and upwards to center it vertically and horizontally.

Keep in mind that with this technique, the element could end being rendered at a non-integer pixel
boundary, making it look blurry. See this answer in SO for a workaround.

HTML

<div class="container">
 <div class="element"></div>
</div>

CSS

.container {
 position: relative;
}

.element {
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
}

View example in JSFiddle

CROSS BROWSER COMPATIBILITY

The transform property needs prefixes to be supported by older browsers. Prefixes are needed for
Chrome<=35, Safari<=8, Opera<=22, Android Browser<=4.4.4, and IE9. CSS transforms are not
supported by IE8 and older versions.

Here is a common transform declaration for the previous example:

-webkit-transform: translate(-50%, -50%); /* Chrome, Safari, Opera, Android */
 -ms-transform: translate(-50%, -50%); /* IE 9 */
 transform: translate(-50%, -50%);

For more information see canIuse.

https://riptutorial.com/ 71

http://www.riptutorial.com/css/topic/938/2d-transforms
http://stackoverflow.com/a/32329785/1385678
https://jsfiddle.net/webtiki/rz3p3ufs/
http://caniuse.com/#feat=transforms2d

MORE INFORMATION

The element is being positioned according to the first non-static parent (position: relative,
absolute, or fixed). Explore more in this fiddle and this documentation topic.

•

For horizontal-only centering, use left: 50% and transform: translateX(-50%). The same goes
for vertical-only centering: center with top: 50% and transform: translateY(-50%).

•

Using a non-static width/height elements with this method of centering can cause the
centered element to appear squished. This mostly happens with elements containing text,
and can be fixed by adding: margin-right: -50%; and margin-bottom: -50%;. View this fiddle for
more information.

•

Using Flexbox

HTML:

<div class="container">

</div>

CSS:

html, body, .container {
 height: 100%;
}
.container {
 display: flex;
 justify-content: center; /* horizontal center */
}
img {
 align-self: center; /* vertical center */
}

View Result

HTML:

CSS:

html, body {
 height: 100%;
}
body {
 display: flex;
 justify-content: center; /* horizontal center */
 align-items: center; /* vertical center */
}

https://riptutorial.com/ 72

https://jsfiddle.net/siavasfiroozbakht/ox8kyypa/
http://www.riptutorial.com/css/example/3919/absolute-position
https://jsfiddle.net/4xxmxca0/
https://jsfiddle.net/aLu05kjy/1/

View Result

See Dynamic Vertical and Horizontal Centering under the Flexbox documentation for more details
on flexbox and what the styles mean.

Browser Support

Flexbox is supported by all major browsers, except IE versions before 10.

Some recent browser versions, such as Safari 8 and IE10, require vendor prefixes.

For a quick way to generate prefixes there is Autoprefixer, a third-party tool.

For older browsers (like IE 8 & 9) a Polyfill is available.

For a more detailed look at flexbox browser support, see this answer.

Using position: absolute

Working in old browsers (IE >= 8)

Automatic margins, paired with values of zero for the left and right or top and bottom offsets, will
center an absolutely positioned elements within its parent.

View Result

HTML

<div class="parent">

</div>

CSS

.parent {
 position: relative;
 height: 500px;
}

.center {
 position: absolute;
 margin: auto;
 top: 0;
 right: 0;
 bottom: 0;
 left: 0;
}

Elements that don't have their own implicit width and height like images do, will need those values
defined.

Other resources: Absolute Centering in CSS

https://riptutorial.com/ 73

https://jsfiddle.net/ttp0bzfm/1/
http://www.riptutorial.com/css/example/10351/dynamic-vertical-and-horizontal-centering--align-items--justify-content-
http://www.riptutorial.com/css/topic/445/flexible-box-layout--flexbox-
http://caniuse.com/#search=flex
https://developer.mozilla.org/en-US/docs/Glossary/Vendor_Prefix
https://autoprefixer.github.io/
https://github.com/jonathantneal/flexibility
http://stackoverflow.com/a/35137869/3597276
https://jsfiddle.net/stuttufu/sj2m0oo2/1/
http://codepen.io/shshaw/details/gEiDt

Ghost element technique (Michał Czernow's hack)

This technique works even when the container's dimensions are unknown.

Set up a "ghost" element inside the container to be centered that is 100% height, then use
vertical-align: middle on both that and the element to be centered.

CSS

/* This parent can be any width and height */
.block {
 text-align: center;

 /* May want to do this if there is risk the container may be narrower than the element
inside */
 white-space: nowrap;
}

/* The ghost element */
.block:before {
 content: '';
 display: inline-block;
 height: 100%;
 vertical-align: middle;

 /* There is a gap between ghost element and .centered,
 caused by space character rendered. Could be eliminated by
 nudging .centered (nudge distance depends on font family),
 or by zeroing font-size in .parent and resetting it back
 (probably to 1rem) in .centered. */
 margin-right: -0.25em;
}

/* The element to be centered, can also be of any width and height */
.centered {
 display: inline-block;
 vertical-align: middle;
 width: 300px;
 white-space: normal; /* Resetting inherited nowrap behavior */
}

HTML

<div class="block">
 <div class="centered"></div>
</div>

Using text-align

The most common and easiest type of centering is that of lines of text in an element. CSS has the
rule text-align: center for this purpose:

HTML

https://riptutorial.com/ 74

<p>Lorem ipsum</p>

CSS

p {
 text-align: center;
}

This does not work for centering entire block elements. text-align controls only alignment of inline
content like text in its parent block element.

See more about text-align in Typography section.

Centering in relation to another item

We will see how to center content based on the height of a near element.

Compatibility: IE8+, all other modern browsers.

HTML

<div class="content">
 <div class="position-container">
 <div class="thumb">

 </div>
 <div class="details">
 <p class="banner-title">text 1</p>
 <p class="banner-text">content content content content content content content content
content content content content content content</p>
 <button class="btn">button</button>
 </div>
 </div>
</div>

CSS

.content * {
 box-sizing: border-box;
}
.content .position-container {
 display: table;
}
.content .details {
 display: table-cell;
 vertical-align: middle;
 width: 33.333333%;
 padding: 30px;
 font-size: 17px;
 text-align: center;
}
.content .thumb {
 width: 100%;
}
.content .thumb img {

https://riptutorial.com/ 75

http://www.riptutorial.com/css/topic/427/typography

 width: 100%;
}

Link to JSFiddle

The main points are the 3 .thumb, .details and .position-container containers:

The .position-container must have display: table.•

The .details must have the real width set width: and display: table-cell, vertical-
align: middle.

•

The .thumb must have width: 100% if you want that it will take all the remaining space and it
will be influenced by the .details width.

•

The image (if you have an image) inside .thumb should have width: 100%, but it is not
necessary if you have correct proportions.

•

Vertical align anything with 3 lines of code

Supported by IE11+

View Result

Use these 3 lines to vertical align practically everything. Just make sure the div/image you apply
the code to has a parent with a height.

CSS

div.vertical {
 position: relative;
 top: 50%;
 transform: translateY(-50%);
}

HTML

<div class="vertical">Vertical aligned text!</div>

Vertically align an image inside div

HTML

<div class="wrap">

</div>

CSS

.wrap {

https://riptutorial.com/ 76

https://jsfiddle.net/gasp10/6bv92mko/4/
http://caniuse.com/#search=transform
https://jsfiddle.net/bnqrLgk9/1/

 height: 50px;/* max image height */
 width: 100px;
 border: 1px solid blue;
 text-align: center;
}
.wrap:before {
 content:"";
 display: inline-block;
 height: 100%;
 vertical-align: middle;
 width: 1px;
}

img {
 vertical-align: middle;
}

Horizontal and Vertical centering using table layout

One could easily center a child element using table display property.

HTML

<div class="wrapper">
 <div class="parent">
 <div class="child"></div>
 </div>
</div>

CSS

.wrapper {
 display: table;
 vertical-align: center;
 width: 200px;
 height: 200px;
 background-color: #9e9e9e;
}
.parent {
 display: table-cell;
 vertical-align: middle;
 text-align: center;
}
.child {
 display: inline-block;
 vertical-align: middle;
 text-align: center;
 width: 100px;
 height: 100px;
 background-color: teal;
}

Using calc()

The calc() function is the part of a new syntax in CSS3 in which you can calculate (mathematically)
what size/position your element occupies by using a variety of values like pixels, percentages, etc.

https://riptutorial.com/ 77

Note:- Whenever you use this function, always take care of the space between two values
calc(100% - 80px).

CSS

.center {
 position: absolute;
 height: 50px;
 width: 50px;
 background: red;
 top: calc(50% - 50px / 2); /* height divided by 2*/
 left: calc(50% - 50px / 2); /* width divided by 2*/
}

HTML

<div class="center"></div>

Vertically align dynamic height elements

Applying css intuitively doesn't produce the desired results because

vertical-align:middle isn't applicable to block-level elements•
margin-top:auto and margin-bottom:auto used values would compute as zero•
margin-top:-50% percentage-based margin values are calculated relative to the width of
containing block

•

For widest browser support, a workaround with helper elements:

HTML

<div class="vcenter--container">
 <div class="vcenter--helper">
 <div class="vcenter--content">
 <!--stuff-->
 </div>
 </div>
</div>

CSS

.vcenter--container {
 display: table;
 height: 100%;
 position: absolute;
 overflow: hidden;
 width: 100%;
}
.vcenter--helper {
 display: table-cell;
 vertical-align: middle;
}
.vcenter--content {

https://riptutorial.com/ 78

http://www.w3.org/TR/CSS21/visudet.html#propdef-vertical-align
http://www.w3.org/TR/CSS21/visudet.html#propdef-vertical-align
http://www.w3.org/TR/CSS2/visudet.html#Computing_heights_and_margins
http://www.w3.org/TR/CSS2/visudet.html#Computing_heights_and_margins
http://www.w3.org/TR/CSS2/box.html#margin-properties
http://www.w3.org/TR/CSS2/box.html#margin-properties
http://www.w3.org/TR/CSS2/box.html#margin-properties
http://www.w3.org/TR/CSS2/box.html#margin-properties

 margin: 0 auto;
 width: 200px;
}

jsfiddle from original question. This approach

works with dynamic height elements•
respects content flow•
is supported by legacy browsers•

Using line-height

You can also use line-height to center vertically a single line of text inside a container :

CSS

div {
 height: 200px;
 line-height: 200px;
}

That's quite ugly, but can be useful inside an <input /> element. The line-height property works
only when the text to be centered spans a single line. If the text wraps into multiple lines, the
resulting output won't be centered.

Centering vertically and horizontally without worrying about height or width

The following technique allows you to add your content to an HTML element and center it both
horizontally and vertically without worrying about its height or width.

The outer container

should have display: table;•

The inner container

should have display: table-cell;•
should have vertical-align: middle;•
should have text-align: center;•

The content box

should have display: inline-block;•
should re-adjust the horizontal text-alignment to eg. text-align: left; or text-align: right;,
unless you want text to be centered

•

https://riptutorial.com/ 79

http://jsfiddle.net/ovfiddle/yVAW9/
http://stackoverflow.com/a/12417336/1081234

Demo

HTML

<div class="outer-container">
 <div class="inner-container">
 <div class="centered-content">
 You can put anything here!
 </div>
 </div>
</div>

CSS

body {
 margin : 0;
}

.outer-container {
 position : absolute;
 display: table;
 width: 100%; /* This could be ANY width */
 height: 100%; /* This could be ANY height */
 background: #ccc;
}

.inner-container {
 display: table-cell;
 vertical-align: middle;
 text-align: center;
}

.centered-content {
 display: inline-block;
 text-align: left;
 background: #fff;
 padding: 20px;
 border: 1px solid #000;
}

See also this Fiddle!

Centering with fixed size

If the size of your content is fixed, you can use absolute positioning to 50% with margin that
reduces half of your content's width and height:

HTML

<div class="center">
 Center vertically and horizontally
</div>

CSS

https://riptutorial.com/ 80

http://jsfiddle.net/WXLsY/621/

.center {
 position: absolute;
 background: #ccc;

 left: 50%;
 width: 150px;
 margin-left: -75px; /* width * -0.5 */

 top: 50%;
 height: 200px;
 margin-top: -100px; /* height * -0.5 */
}

Horizontal centering with only fixed width

You can center the element horizontally even if you don't know the height of the content:

HTML

<div class="center">
 Center only horizontally
</div>

CSS

.center {
 position: absolute;
 background: #ccc;

 left: 50%;
 width: 150px;
 margin-left: -75px; /* width * -0.5 */
}

Vertical centering with fixed height

You can center the element vertically if you know the element's height:

HTML

<div class="center">
 Center only vertically
</div>

CSS

.center {
 position: absolute;
 background: #ccc;

 top: 50%;
 height: 200px;

https://riptutorial.com/ 81

 margin-top: -100px; /* width * -0.5 */
}

Using margin: 0 auto;

Objects can be centered by using margin: 0 auto; if they are block elements and have a defined
width.

HTML

<div class="containerDiv">
 <div id="centeredDiv"></div>
</div>

<div class="containerDiv">
 <p id="centeredParagraph">This is a centered paragraph.</p>
</div>

<div class="containerDiv">
 <img id="centeredImage" src="https://i.kinja-img.com/gawker-media/image/upload/s--
c7Q9b4Eh--/c_scale,fl_progressive,q_80,w_800/qqyvc3bkpyl3mfhr8all.jpg" />
</div>

CSS

.containerDiv {
 width: 100%;
 height: 100px;
 padding-bottom: 40px;
}

#centeredDiv {
 margin: 0 auto;
 width: 200px;
 height: 100px;
 border: 1px solid #000;
}

#centeredParagraph {
 width: 200px;
 margin: 0 auto;
}

#centeredImage {
 display: block;
 width: 200px;
 margin: 0 auto;
}

Result:

https://riptutorial.com/ 82

JSFiddle example: Centering objects with margin: 0 auto;

Read Centering online: https://riptutorial.com/css/topic/299/centering

https://riptutorial.com/ 83

https://i.stack.imgur.com/Zq0N0.png
https://jsfiddle.net/xf1ze3v9/
https://riptutorial.com/css/topic/299/centering

Chapter 12: Clipping and Masking

Syntax

Clipping•
clip-path: <clip-source> | [<basic-shape> || <clip-geometry-box>] | none•
Masking•
mask-image: [none | <mask-reference>]#•
mask-mode: [<mask-mode>]#•
mask-repeat: [<repeat-style]#•
mask-position: [<position>]#•
mask-clip: [<geometry-box> | no-clip]#•
mask-origin: [<geometry-box>]#•
mask-size: [<bg-size>]#•
mask-composite: [<compositing-operator>]#•
mask: [<mask-reference> <masking-mode>? || <position> [/ <bg-size>]? || <repeat-style> ||
<geometry-box> || [<geometry-box> | no-clip] || <compositing-operator>]#

•

Parameters

Parameter Details

clip-source
A URL which can point to an inline SVG element (or) an SVG element in an
external file that contains the clip path's definition.

basic-shape
Refers to one among inset(), circle(), ellipse() or polygon(). Using one of
these functions the clipping path is defined. These shape functions work
exactly the same way as they do in Shapes for Floats

clip-
geometry-box

This can have one among content-box, padding-box, border-box, margin-box,
fill-box, stroke-box, view-box as values. When this is provided without any
value for <basic-shape>, the edges of the corresponding box is used as the
path for clipping. When used with a <basic-shape>, this acts as the
reference box for the shape.

mask-
reference

This can be none or an image or a reference URL to a mask image source.

repeat-style
This specifies how the mask should be repeated or tiled in the X and Y axes.
The supported values are repeat-x, repeat-y, repeat, space, round, no-repeat.

Can be alpha or luminance or auto and indicates whether the mask should be
treated as a alpha mask or a luminance mask. If no value is provided and the
mask-reference is a direct image then it would be considered as alpha mask
(or) if the mask-reference is a URL then it would be considered as luminance

mask-mode

https://riptutorial.com/ 84

http://www.riptutorial.com/css/topic/2034/shapes-for-floats

Parameter Details

mask.

position
This specifies the position of each mask layer and is similar in behavior to
the background-position property. The value can be provided in 1 value
syntax (like top, 10%) or in 2 value syntax (like top right, 50% 50%).

geometry-box

This specifies the box to which the mask should be clipped (mask painting
area) or the box which should be used as reference for the mask's origin (
mask positioning area) depending on the property. The list of possible values
are content-box, padding-box, border-box, margin-box, fill-box, stroke-box,
view-box. Detailed explanation of how each of those values work is available
in the W3C Spec.

bg-size

This represents the size of each mask-image layer and has the same syntax
as background-size. The value can be length or percentage or auto or cover
or contain. Length, percentage and auto can either be provided as a single
value or as one for each axis.

compositing-
operator

This can be any one among add, subtract, exclude, multiply per layer and
defines the type of compositing operation that should be used for this layer
with those below it. Detailed explanation about each value is available in the
W3C Specs.

Remarks

CSS Clipping and Masking are very new concepts and so the browser support for these
properties are pretty low.

Masks:

As at the time of writing (Jul '16), Chrome, Safari and Opera support these properties with the -
webkit- prefix.

Firefox doesn't require prefixes but it supports masks only when used with SVG mask elements. For
inline SVG mask elements, the syntax is mask: url(#msk) whereas for using mask elements in an
external SVG file the syntax is mask: url('yourfilepath/yourfilename.svg#msk'). #msk in both cases
refers to the id of the mask element that is being referred to. As indicated in this answer, at present
Firefox doesn't support any parameter other than mask-reference in the mask property.

Internet Explorer (and Edge) does not offer any support for this property as yet.

The mask-mode property is currently not supported by any browser with or without prefixes.

https://riptutorial.com/ 85

https://www.w3.org/TR/css-masking/#the-mask-clip
https://www.w3.org/TR/css-masking/#the-mask-composite
http://stackoverflow.com/questions/38650751/css-mask-not-working-on-firefox

Clip-path:

As at the time writing (Jul '16) Chrome, Safari and Opera supports clip-path when the path is
created using basic shapes (like circle, polygon) or the url(#clipper) syntax with inline SVG. They
don't support clipping based on shapes that are part of external SVG files. Also, they require the -
webkit prefix to be present.

Firefox supports only the url() syntax for clip-path whereas Internet Explorer (and Edge) offer no
support.

Examples

Clipping (Polygon)

CSS:

div{
 width:200px;
 height:200px;
 background:teal;
 clip-path: polygon(0 0, 0 100%, 100% 50%); /* refer remarks before usage */
}

HTML:

<div></div>

In the above example, a polygonal clipping path is used to clip the square (200 x 200) element
into a triangle shape. The output shape is a triangle because the path starts at (that is, first
coordinates are at) 0 0 - which is the top-left corner of the box, then goes to 0 100% - which is
bottom-left corner of the box and then finally to 100% 50% which is nothing but the right-middle point
of the box. These paths are self closing (that is, the starting point will be the ending point) and so
the final shape is that of a triangle.

This can also be used on an element with an image or a gradient as background.

View Example

Output:

https://riptutorial.com/ 86

https://jsfiddle.net/eoa4a94k/

Clipping (Circle)

CSS:

div{
 width: 200px;
 height: 200px;
 background: teal;
 clip-path: circle(30% at 50% 50%); /* refer remarks before usage */
}

HTML

<div></div>

This example shows how to clip a div to a circle. The element is clipped into a circle whose radius
is 30% based on the dimensions of the reference box with its center point at the center of the
reference box. Here since no <clip-geometry-box> (in other words, reference box) is provided, the
border-box of the element will be used as the reference box.

The circle shape needs to have a radius and a center with (x,y) coordinates:

circle(radius at x y)

View Example

Output:

https://riptutorial.com/ 87

http://i.stack.imgur.com/HMHSC.png
https://jsfiddle.net/webtiki/qp69n494/

Clipping and Masking: Overview and Difference

With Clipping and Masking you can make some specified parts of elements transparent or
opaque. Both can be applied to any HTML element.

Clipping

Clips are vector paths. Outside of this path the element will be transparent, inside it's opaque.
Therefore you can define a clip-path property on elements. Every graphical element that also
exists in SVG you can use here as a function to define the path. Examples are circle(), polygon()
or ellipse().

Example

clip-path: circle(100px at center);

The element will be only visible inside of this circle, which is positioned at the center of the
element and has a radius of 100px.

Masking

Masks are similar to Clips, but instead of defining a path you define a mask what layers over the

https://riptutorial.com/ 88

https://jsfiddle.net/webtiki/qp69n494/
http://i.stack.imgur.com/7x1WOm.png

element. You can imagine this mask as an image what consist of mainly two colors: black and
white.

Luminance Mask: Black means the region is opaque, and white that it's transparent, but there is
also a grey area which is semi-transparent, so you are able to make smooth transitions.

Alpha Mask: Only on the transparent areas of the mask the element will be opaque.

This image for example can be used as a luminance mask to make for an element a very smooth
transition from right to left and from opaque to transparent.

The mask property let you specify the the mask type and an image to be used as layer.

Example

mask: url(masks.svg#rectangle) luminance;

An element called rectangle defined in masks.svg will be used as an luminance mask on the
element.

Simple mask that fades an image from solid to transparent

CSS

div {
 height: 200px;
 width: 200px;
 background: url(http://lorempixel.com/200/200/nature/1);
 mask-image: linear-gradient(to right, white, transparent);
}

HTML

<div></div>

In the above example there is an element with an image as its background. The mask that is

https://riptutorial.com/ 89

http://i.stack.imgur.com/WGJAym.png

applied on the image (using CSS) makes it look as though it is fading out from left to right.

The masking is achieved by using a linear-gradient that goes from white (on the left) to
transparent (on the right) as the mask. As it is an alpha mask, image becomes transparent where
the mask is transparent.

Output without the mask:

Output with the mask:

Note: As mentioned in remarks, the above example would work in Chrome, Safari and Opera only
when used with the -webkit prefix. This example (with a linear-gradient as mask image) is not yet
supported in Firefox.

Using masks to cut a hole in the middle of an image

CSS

div {
 width: 200px;
 height: 200px;
 background: url(http://lorempixel.com/200/200/abstract/6);
 mask-image: radial-gradient(circle farthest-side at center, transparent 49%, white 50%); /*
check remarks before using */
}

https://riptutorial.com/ 90

http://i.stack.imgur.com/NuDDU.png
http://i.stack.imgur.com/0IzYy.png

HTML

In the above example, a transparent circle is created at the center using radial-gradient and this is
then used as a mask to produce the effect of a circle being cut out from the center of an image.

Image without mask:

Image with mask:

Using masks to create images with irregular shapes

CSS

div { /* check remarks before usage */
 height: 200px;
 width: 400px;
 background-image: url(http://lorempixel.com/400/200/nature/4);
 mask-image: linear-gradient(to top right, transparent 49.5%, white 50.5%), linear-
gradient(to top left, transparent 49.5%, white 50.5%), linear-gradient(white, white);
 mask-size: 75% 25%, 25% 25%, 100% 75%;
 mask-position: bottom left, bottom right, top left;
 mask-repeat: no-repeat;
}

https://riptutorial.com/ 91

http://i.stack.imgur.com/lsyRy.png
http://i.stack.imgur.com/1DBOI.png

HTML

<div></div>

In the above example, three linear-gradient images (which when placed in their appropriate
positions would cover 100% x 100% of the container's size) are used as masks to produce a
transparent triangular shaped cut at the bottom of the image.

Image without the mask:

Image with the mask:

Read Clipping and Masking online: https://riptutorial.com/css/topic/3721/clipping-and-masking

https://riptutorial.com/ 92

https://i.stack.imgur.com/OLcC9.png
https://i.stack.imgur.com/yOsfT.png
https://riptutorial.com/css/topic/3721/clipping-and-masking

Chapter 13: Colors

Syntax

color: #rgb•
color: #rrggbb•
color: rgb[a](<red>, <green>, <blue>[, <alpha>])•
color: hsl[a](<hue>, <saturation%>, <lightness%>[, <alpha>])•
color: colorkeyword /* green, blue, yellow, orange, red, ..etc */•

Examples

Color Keywords

Most browsers support using color keywords to specify a color. For example, to set the color of an
element to blue, use the blue keyword:

.some-class {
 color: blue;
}

CSS keywords are not case sensitive—blue, Blue and BLUE will all result in #0000FF.

Color Keywords

Color name Hex value RGB values Color

AliceBlue #F0F8FF rgb(240,248,255)

AntiqueWhite #FAEBD7 rgb(250,235,215)

Aqua #00FFFF rgb(0,255,255)

Aquamarine #7FFFD4 rgb(127,255,212)

Azure #F0FFFF rgb(240,255,255)

Beige #F5F5DC rgb(245,245,220)

Bisque #FFE4C4 rgb(255,228,196)

Black #000000 rgb(0,0,0)

https://riptutorial.com/ 93

http://www.riptutorial.com/css/example/2099/color-keywords
https://i.stack.imgur.com/dVsBW.png
https://i.stack.imgur.com/jvOLr.png
https://i.stack.imgur.com/vvCsT.png
https://i.stack.imgur.com/3grSN.png
https://i.stack.imgur.com/bH1ms.png
https://i.stack.imgur.com/fUpj6.png
https://i.stack.imgur.com/brQkJ.png
https://i.stack.imgur.com/cr64Z.png

Color name Hex value RGB values Color

BlanchedAlmond #FFEBCD rgb(255,235,205)

Blue #0000FF rgb(0,0,255)

BlueViolet #8A2BE2 rgb(138,43,226)

Brown #A52A2A rgb(165,42,42)

BurlyWood #DEB887 rgb(222,184,135)

CadetBlue #5F9EA0 rgb(95,158,160)

Chartreuse #7FFF00 rgb(127,255,0)

Chocolate #D2691E rgb(210,105,30)

Coral #FF7F50 rgb(255,127,80)

CornflowerBlue #6495ED rgb(100,149,237)

Cornsilk #FFF8DC rgb(255,248,220)

Crimson #DC143C rgb(220,20,60)

Cyan #00FFFF rgb(0,255,255)

DarkBlue #00008B rgb(0,0,139)

DarkCyan #008B8B rgb(0,139,139)

DarkGoldenRod #B8860B rgb(184,134,11)

DarkGray #A9A9A9 rgb(169,169,169)

DarkGrey #A9A9A9 rgb(169,169,169)

DarkGreen #006400 rgb(0,100,0)

DarkKhaki #BDB76B rgb(189,183,107)

DarkMagenta #8B008B rgb(139,0,139)

https://riptutorial.com/ 94

https://i.stack.imgur.com/WwRQg.png
https://i.stack.imgur.com/Pn17o.png
https://i.stack.imgur.com/X7cq0.png
https://i.stack.imgur.com/pgKFN.png
https://i.stack.imgur.com/GGAHU.png
https://i.stack.imgur.com/Fx9ga.png
https://i.stack.imgur.com/dVCUd.png
https://i.stack.imgur.com/U0eMw.png
https://i.stack.imgur.com/QEETt.png
https://i.stack.imgur.com/gI2Wv.png
https://i.stack.imgur.com/9U0uV.png
https://i.stack.imgur.com/ub3mh.png
https://i.stack.imgur.com/MM0cY.png
https://i.stack.imgur.com/YtKOx.png
https://i.stack.imgur.com/qzL44.png
https://i.stack.imgur.com/Cuf10.png
https://i.stack.imgur.com/W83Ip.png
https://i.stack.imgur.com/wfBJS.png
https://i.stack.imgur.com/jfMqO.png
https://i.stack.imgur.com/ZdZMD.png
https://i.stack.imgur.com/oxUBA.png

Color name Hex value RGB values Color

DarkOliveGreen #556B2F rgb(85,107,47)

DarkOrange #FF8C00 rgb(255,140,0)

DarkOrchid #9932CC rgb(153,50,204)

DarkRed #8B0000 rgb(139,0,0)

DarkSalmon #E9967A rgb(233,150,122)

DarkSeaGreen #8FBC8F rgb(143,188,143)

DarkSlateBlue #483D8B rgb(72,61,139)

DarkSlateGray #2F4F4F rgb(47,79,79)

DarkSlateGrey #2F4F4F rgb(47,79,79)

DarkTurquoise #00CED1 rgb(0,206,209)

DarkViolet #9400D3 rgb(148,0,211)

DeepPink #FF1493 rgb(255,20,147)

DeepSkyBlue #00BFFF rgb(0,191,255)

DimGray #696969 rgb(105,105,105)

DimGrey #696969 rgb(105,105,105)

DodgerBlue #1E90FF rgb(30,144,255)

FireBrick #B22222 rgb(178,34,34)

FloralWhite #FFFAF0 rgb(255,250,240)

ForestGreen #228B22 rgb(34,139,34)

Fuchsia #FF00FF rgb(255,0,255)

Gainsboro #DCDCDC rgb(220,220,220)

https://riptutorial.com/ 95

https://i.stack.imgur.com/zuMtq.png
https://i.stack.imgur.com/HL4wv.png
https://i.stack.imgur.com/DEL6o.png
https://i.stack.imgur.com/kB7Ws.png
https://i.stack.imgur.com/1ANMl.png
https://i.stack.imgur.com/YnJo6.png
https://i.stack.imgur.com/Ui2ao.png
https://i.stack.imgur.com/RQKDI.png
https://i.stack.imgur.com/dnrhi.png
https://i.stack.imgur.com/5hFAA.png
https://i.stack.imgur.com/Mz1e8.png
https://i.stack.imgur.com/dsQkM.png
https://i.stack.imgur.com/St8cI.png
https://i.stack.imgur.com/Q0jnZ.png
https://i.stack.imgur.com/YVu2z.png
https://i.stack.imgur.com/woYd8.png
https://i.stack.imgur.com/UauLn.png
https://i.stack.imgur.com/TZoP1.png
https://i.stack.imgur.com/mU5Ao.png
https://i.stack.imgur.com/kUZUE.png
https://i.stack.imgur.com/oAq7U.png

Color name Hex value RGB values Color

GhostWhite #F8F8FF rgb(248,248,255)

Gold #FFD700 rgb(255,215,0)

GoldenRod #DAA520 rgb(218,165,32)

Gray #808080 rgb(128,128,128)

Grey #808080 rgb(128,128,128)

Green #008000 rgb(0,128,0)

GreenYellow #ADFF2F rgb(173,255,47)

HoneyDew #F0FFF0 rgb(240,255,240)

HotPink #FF69B4 rgb(255,105,180)

IndianRed #CD5C5C rgb(205,92,92)

Indigo #4B0082 rgb(75,0,130)

Ivory #FFFFF0 rgb(255,255,240)

Khaki #F0E68C rgb(240,230,140)

Lavender #E6E6FA rgb(230,230,250)

LavenderBlush #FFF0F5 rgb(255,240,245)

LawnGreen #7CFC00 rgb(124,252,0)

LemonChiffon #FFFACD rgb(255,250,205)

LightBlue #ADD8E6 rgb(173,216,230)

LightCoral #F08080 rgb(240,128,128)

LightCyan #E0FFFF rgb(224,255,255)

LightGoldenRodYellow #FAFAD2 rgb(250,250,210)

https://riptutorial.com/ 96

https://i.stack.imgur.com/t3EEP.png
https://i.stack.imgur.com/T2jzS.png
https://i.stack.imgur.com/XSTBL.png
https://i.stack.imgur.com/67NpE.png
https://i.stack.imgur.com/mj8Uh.png
https://i.stack.imgur.com/U0T5D.png
https://i.stack.imgur.com/BtLwR.png
https://i.stack.imgur.com/rvbJk.png
https://i.stack.imgur.com/fIn2e.png
https://i.stack.imgur.com/xZV1l.png
https://i.stack.imgur.com/Y9Sn4.png
https://i.stack.imgur.com/prMC1.png
https://i.stack.imgur.com/YPrh0.png
https://i.stack.imgur.com/giHoF.png
https://i.stack.imgur.com/aZGQE.png
https://i.stack.imgur.com/adxCj.png
https://i.stack.imgur.com/38Fr3.png
https://i.stack.imgur.com/TWZb7.png
https://i.stack.imgur.com/8Yun8.png
https://i.stack.imgur.com/hC4eY.png
https://i.stack.imgur.com/D3scU.png

Color name Hex value RGB values Color

LightGray #D3D3D3 rgb(211,211,211)

LightGrey #D3D3D3 rgb(211,211,211)

LightGreen #90EE90 rgb(144,238,144)

LightPink #FFB6C1 rgb(255,182,193)

LightSalmon #FFA07A rgb(255,160,122)

LightSeaGreen #20B2AA rgb(32,178,170)

LightSkyBlue #87CEFA rgb(135,206,250)

LightSlateGray #778899 rgb(119,136,153)

LightSlateGrey #778899 rgb(119,136,153)

LightSteelBlue #B0C4DE rgb(176,196,222)

LightYellow #FFFFE0 rgb(255,255,224)

Lime #00FF00 rgb(0,255,0)

LimeGreen #32CD32 rgb(50,205,50)

Linen #FAF0E6 rgb(250,240,230)

Magenta #FF00FF rgb(255,0,255)

Maroon #800000 rgb(128,0,0)

MediumAquaMarine #66CDAA rgb(102,205,170)

MediumBlue #0000CD rgb(0,0,205)

MediumOrchid #BA55D3 rgb(186,85,211)

MediumPurple #9370DB rgb(147,112,219)

MediumSeaGreen #3CB371 rgb(60,179,113)

https://riptutorial.com/ 97

https://i.stack.imgur.com/5A6Ef.png
https://i.stack.imgur.com/gLPoR.png
https://i.stack.imgur.com/2VvNK.png
https://i.stack.imgur.com/Ekikz.png
https://i.stack.imgur.com/JxzwJ.png
https://i.stack.imgur.com/XsjW4.png
https://i.stack.imgur.com/txw7K.png
https://i.stack.imgur.com/x2SLs.png
https://i.stack.imgur.com/k8Y23.png
https://i.stack.imgur.com/8wsSt.png
https://i.stack.imgur.com/QGEjh.png
https://i.stack.imgur.com/etPK7.png
https://i.stack.imgur.com/IIA3t.png
https://i.stack.imgur.com/OSEq5.png
https://i.stack.imgur.com/UL5lW.png
https://i.stack.imgur.com/hMH8V.png
https://i.stack.imgur.com/6WAqo.png
https://i.stack.imgur.com/6PWeI.png
https://i.stack.imgur.com/op66E.png
https://i.stack.imgur.com/IKsEM.png
https://i.stack.imgur.com/jweG4.png

Color name Hex value RGB values Color

MediumSlateBlue #7B68EE rgb(123,104,238)

MediumSpringGreen #00FA9A rgb(0,250,154)

MediumTurquoise #48D1CC rgb(72,209,204)

MediumVioletRed #C71585 rgb(199,21,133)

MidnightBlue #191970 rgb(25,25,112)

MintCream #F5FFFA rgb(245,255,250)

MistyRose #FFE4E1 rgb(255,228,225)

Moccasin #FFE4B5 rgb(255,228,181)

NavajoWhite #FFDEAD rgb(255,222,173)

Navy #000080 rgb(0,0,128)

OldLace #FDF5E6 rgb(253,245,230)

Olive #808000 rgb(128,128,0)

OliveDrab #6B8E23 rgb(107,142,35)

Orange #FFA500 rgb(255,165,0)

OrangeRed #FF4500 rgb(255,69,0)

Orchid #DA70D6 rgb(218,112,214)

PaleGoldenRod #EEE8AA rgb(238,232,170)

PaleGreen #98FB98 rgb(152,251,152)

PaleTurquoise #AFEEEE rgb(175,238,238)

PaleVioletRed #DB7093 rgb(219,112,147)

PapayaWhip #FFEFD5 rgb(255,239,213)

https://riptutorial.com/ 98

https://i.stack.imgur.com/OX3RE.png
https://i.stack.imgur.com/3B3P5.png
https://i.stack.imgur.com/Eymkn.png
https://i.stack.imgur.com/llyIE.png
https://i.stack.imgur.com/2DJyF.png
https://i.stack.imgur.com/kdsyq.png
https://i.stack.imgur.com/74kMX.png
https://i.stack.imgur.com/rN1Vt.png
https://i.stack.imgur.com/YPIiR.png
https://i.stack.imgur.com/crswN.png
https://i.stack.imgur.com/6KGAc.png
https://i.stack.imgur.com/iC0zi.png
https://i.stack.imgur.com/QWYbj.png
https://i.stack.imgur.com/PLSrS.png
https://i.stack.imgur.com/CpUCV.png
https://i.stack.imgur.com/BtICR.png
https://i.stack.imgur.com/B7grq.png
https://i.stack.imgur.com/MywLd.png
https://i.stack.imgur.com/0IYp9.png
https://i.stack.imgur.com/NTY24.png
https://i.stack.imgur.com/3dl4v.png

Color name Hex value RGB values Color

PeachPuff #FFDAB9 rgb(255,218,185)

Peru #CD853F rgb(205,133,63)

Pink #FFC0CB rgb(255,192,203)

Plum #DDA0DD rgb(221,160,221)

PowderBlue #B0E0E6 rgb(176,224,230)

Purple #800080 rgb(128,0,128)

RebeccaPurple #663399 rgb(102,51,153)

Red #FF0000 rgb(255,0,0)

RosyBrown #BC8F8F rgb(188,143,143)

RoyalBlue #4169E1 rgb(65,105,225)

SaddleBrown #8B4513 rgb(139,69,19)

Salmon #FA8072 rgb(250,128,114)

SandyBrown #F4A460 rgb(244,164,96)

SeaGreen #2E8B57 rgb(46,139,87)

SeaShell #FFF5EE rgb(255,245,238)

Sienna #A0522D rgb(160,82,45)

Silver #C0C0C0 rgb(192,192,192)

SkyBlue #87CEEB rgb(135,206,235)

SlateBlue #6A5ACD rgb(106,90,205)

SlateGray #708090 rgb(112,128,144)

SlateGrey #708090 rgb(112,128,144)

https://riptutorial.com/ 99

https://i.stack.imgur.com/cYrOX.png
https://i.stack.imgur.com/0TaRO.png
https://i.stack.imgur.com/2sr8O.png
https://i.stack.imgur.com/NNjmo.png
https://i.stack.imgur.com/2v6DK.png
https://i.stack.imgur.com/qD3Ou.png
https://i.stack.imgur.com/lBOwr.png
https://i.stack.imgur.com/uiBYF.png
https://i.stack.imgur.com/PJFid.png
https://i.stack.imgur.com/nt8Is.png
https://i.stack.imgur.com/wOUue.png
https://i.stack.imgur.com/eJ0bG.png
https://i.stack.imgur.com/75qiD.png
https://i.stack.imgur.com/xZIev.png
https://i.stack.imgur.com/TyMam.png
https://i.stack.imgur.com/x8Jrq.png
https://i.stack.imgur.com/hh4eT.png
https://i.stack.imgur.com/tnrm5.png
https://i.stack.imgur.com/ubuww.png
https://i.stack.imgur.com/pHN1B.png
https://i.stack.imgur.com/uGW3Z.png

Color name Hex value RGB values Color

Snow #FFFAFA rgb(255,250,250)

SpringGreen #00FF7F rgb(0,255,127)

SteelBlue #4682B4 rgb(70,130,180)

Tan #D2B48C rgb(210,180,140)

Teal #008080 rgb(0,128,128)

Thistle #D8BFD8 rgb(216,191,216)

Tomato #FF6347 rgb(255,99,71)

Turquoise #40E0D0 rgb(64,224,208)

Violet #EE82EE rgb(238,130,238)

Wheat #F5DEB3 rgb(245,222,179)

White #FFFFFF rgb(255,255,255)

WhiteSmoke #F5F5F5 rgb(245,245,245)

Yellow #FFFF00 rgb(255,255,0)

YellowGreen #9ACD32 rgb(154,205,50)

In addition to the named colors, there is also the keyword transparent, which represents a fully-
transparent black: rgba(0,0,0,0)

Hexadecimal Value

Background

CSS colors may also be represented as a hex triplet, where the members represent the red, green
and blue components of a color. Each of these values represents a number in the range of 00 to FF
, or 0 to 255 in decimal notation. Uppercase and/or lowercase Hexidecimal values may be used
(i.e. #3fc = #3FC = #33ffCC). The browser interprets #369 as #336699. If that is not what you intended
but rather wanted #306090, you need to specify that explicitly.

https://riptutorial.com/ 100

https://i.stack.imgur.com/ls53F.png
https://i.stack.imgur.com/SWuAT.png
https://i.stack.imgur.com/gK6oL.png
https://i.stack.imgur.com/UOatT.png
https://i.stack.imgur.com/jIYOb.png
https://i.stack.imgur.com/5EamN.png
https://i.stack.imgur.com/IChJO.png
https://i.stack.imgur.com/vPdms.png
https://i.stack.imgur.com/eWWnU.png
https://i.stack.imgur.com/XN0kJ.png
https://i.stack.imgur.com/hpQVN.png
https://i.stack.imgur.com/cAQ4D.png
https://i.stack.imgur.com/3fAnQ.png
https://i.stack.imgur.com/q7mKa.png

The total number of colors that can be represented with hex notation is 256 ^ 3 or 16,777,216.

Syntax

color: #rrggbb;
color: #rgb

Value Description

rr 00 - FF for the amount of red

gg 00 - FF for the amount of green

bb 00 - FF for the amount of blue

.some-class {
 /* This is equivalent to using the color keyword 'blue' */
 color: #0000FF;
}

.also-blue {
 /* If you want to specify each range value with a single number, you can!
 This is equivalent to '#0000FF' (and 'blue') */
 color: #00F;
}

Hexadecimal notation is used to specify color values in the RGB color format, per the W3C's
'Numerical color values'.

There are a lot of tools available on the Internet for looking up hexadecimal (or simply hex) color
values.

Search for "hex color palette" or "hex color picker" with your favorite web browser to find a
bunch of options!

Hex values always start with a pound sign (#), are up to six "digits" long, and are case-insensitive:
that is, they don't care about capitalization. #FFC125 and #ffc125 are the same color.

rgb() Notation

RGB is an additive color model which represents colors as mixtures of red, green, and blue light.
In essence, the RGB representation is the decimal equivalent of the Hexadecimal Notation. In
Hexadecimal each number ranges from 00-FF which is equivalent to 0-255 in decimal and 0%-
100% in percentages.

.some-class {
 /* Scalar RGB, equivalent to 'blue'*/
 color: rgb(0, 0, 255);
}

https://riptutorial.com/ 101

https://en.wikipedia.org/wiki/Hexadecimal
https://www.w3.org/TR/css3-color/#numerical
https://www.w3.org/TR/css3-color/#numerical

.also-blue {
 /* Percentile RGB values*/
 color: rgb(0%, 0%, 100%);
}

Syntax

rgb(<red>, <green>, <blue>)

Value Description

<red> an integer from 0 - 255 or percentage from 0 - 100%

<green> an integer from 0 - 255 or percentage from 0 - 100%

<blue> an integer from 0 - 255 or percentage from 0 - 100%

hsl() Notation

HSL stands for hue ("which color"), saturation ("how much color") and lightness ("how much
white").

Hue is represented as an angle from 0° to 360° (without units), while saturation and lightness are
represented as percentages.

p {
 color: hsl(240, 100%, 50%); /* Blue */
}

Syntax

color: hsl(<hue>, <saturation>%, <lightness>%);

Value Description

<hue>
specified in degrees around the color wheel (without units), where 0° is red,
60° is yellow, 120° is green, 180° is cyan, 240° is blue, 300° is magenta, and
360° is red

<saturation>
specified in percentage where 0% is fully desaturated (grayscale) and 100% is
fully saturated (vividly colored)

<lightness> specified in percentage where 0% is fully black and 100% is fully white

https://riptutorial.com/ 102

Notes

A saturation of 0% always produces a grayscale color; changing the hue has no effect.•

A lightness of 0% always produces black, and 100% always produces white; changing the
hue or saturation has no effect.

•

currentColor

currentColor returns the computed color value of the current element.

Use in same element

Here currentColor evaluates to red since the color property is set to red:

div {
 color: red;
 border: 5px solid currentColor;
 box-shadow: 0 0 5px currentColor;
}

In this case, specifying currentColor for the border is most likely redundant because omitting it
should produce identical results. Only use currentColor inside the border property within the same
element if it would be overwritten otherwise due to a more specific selector.

Since it's the computed color, the border will be green in the following example due to the second
rule overriding the first:

div {
 color: blue;
 border: 3px solid currentColor;
 color: green;
}

Inherited from parent element

The parent's color is inherited, here currentColor evaluates to 'blue', making the child element's
border-color blue.

.parent-class {
 color: blue;
}

.parent-class .child-class {
 border-color: currentColor;
}

currentColor can also be used by other rules which normally would not inherit from the color

https://riptutorial.com/ 103

http://www.riptutorial.com/css/example/2253/calculating-selector-specificity

property, such as background-color. The example below shows the children using the color set in
the parent as its background:

.parent-class {
 color: blue;
}

.parent-class .child-class {
 background-color: currentColor;
}

Possible Result:

rgba() Notation

Similar to rgb() notation, but with an additional alpha (opacity) value.

.red {
 /* Opaque red */
 color: rgba(255, 0, 0, 1);
}

.red-50p {
 /* Half-translucent red. */
 color: rgba(255, 0, 0, .5);
}

Syntax

rgba(<red>, <green>, <blue>, <alpha>);

Value Description

<red> an integer from 0 - 255 or percentage from 0 - 100%

https://riptutorial.com/ 104

https://i.stack.imgur.com/rkkXo.gif
http://www.riptutorial.com/css/example/2101/rgb---notation

Value Description

<green> an integer from 0 - 255 or percentage from 0 - 100%

<blue> an integer from 0 - 255 or percentage from 0 - 100%

<alpha> a number from 0 - 1, where 0.0 is fully transparent and 1.0 is fully opaque

hsla() Notation

Similar to hsl() notation, but with an added alpha (opacity) value.

hsla(240, 100%, 50%, 0) /* transparent */
hsla(240, 100%, 50%, 0.5) /* half-translucent blue */
hsla(240, 100%, 50%, 1) /* fully opaque blue */

Syntax

hsla(<hue>, <saturation>%, <lightness>%, <alpha>);

Value Description

<hue>
specified in degrees around the color wheel (without units), where 0° is red,
60° is yellow, 120° is green, 180° is cyan, 240° is blue, 300° is magenta, and
360° is red

<saturation>
percentage where 0% is fully desaturated (grayscale) and 100% is fully
saturated (vividly colored)

<lightness> percentage where 0% is fully black and 100% is fully white

<alpha> a number from 0 - 1 where 0 is fully transparent and 1 is fully opaque

Read Colors online: https://riptutorial.com/css/topic/644/colors

https://riptutorial.com/ 105

http://www.riptutorial.com/css/example/2102/hsl---notation
https://riptutorial.com/css/topic/644/colors

Chapter 14: Columns

Syntax

column-count: auto|number|inherit|initial|unset;•
column-width: auto|length;•
column: [column-width]|[column-count];•
column-span: none|all|inherit|initial|unset;•
column-gap: normal|length|inherit|initial|unset;•
column-fill: auto|balance|inherit|intial|unset;•
column-rule-color: color|inherit|initial|unset;•
column-rule-style:
none|hidden|dotted|dashed|solid|double|groove|ridge|inset|outset|inherit|initial|unset;

•

column-rule-width: thin|medium|thick|length|inherit|initial|unset;•
column-rule: [column-rule-width]|[columm-rule-style]|[column-rule-color];•
break-after: auto|always|left|right|recto|verso|page|column|region|avoid|avoid-page|avoid-
column|avoid-region;

•

break-before: auto|always|left|right|recto|verso|page|column|region|avoid|avoid-page|avoid-
column|avoid-region;

•

break-inside: auto|avoid|avoid-page|avoid-column|avoid-region;•

Examples

Simple Example (column-count)

The CSS multi-column layout makes it easy to create multiple columns of text.

Code

<div id="multi-columns">Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim
id est laborum</div>

.multi-columns {
 -moz-column-count: 2;
 -webkit-column-count: 2;
 column-count: 2;
}

Result

https://riptutorial.com/ 106

Column Width

The column-width property sets the minimum column width. If column-count is not defined the
browser will make as many columns as fit in the available width.

Code:

<div id="multi-columns">
 Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat
non proident, sunt in culpa qui officia deserunt mollit anim id est laborum
</div>

.multi-columns {
 -moz-column-width: 100px;
 -webkit-column-width: 100px;
 column-width: 100px;
}

https://riptutorial.com/ 107

https://i.stack.imgur.com/bZHuU.png

Result

Read Columns online: https://riptutorial.com/css/topic/3042/columns

https://riptutorial.com/ 108

https://i.stack.imgur.com/zYzAz.png
https://riptutorial.com/css/topic/3042/columns

Chapter 15: Comments

Syntax

/* Comment */•

Remarks

Comments in CSS always start with /* and end with */•
Comments cannot be nested•

Examples

Single Line

/* This is a CSS comment */
div {
 color: red; /* This is a CSS comment */
}

Multiple Line

/*
 This
 is
 a
 CSS
 comment
*/
div {
 color: red;
}

Read Comments online: https://riptutorial.com/css/topic/1625/comments

https://riptutorial.com/ 109

https://riptutorial.com/css/topic/1625/comments

Chapter 16: Counters

Syntax

counter-set: [<counter-name> <integer>?]+ | none•

counter-reset: [<counter-name> <integer>?]+ | none•

counter-increment: [<counter-name> <integer>?]+ | none•

counter(<counter-name> [, <counter-style>]?)•

counters(<counter-name>, <connector-string> [, <counter-style>]?)•

Parameters

Parameter Details

counter-
name

This is the name of the counter that needs to be created or incremented or
printed. It can be any custom name as the developer wishes.

integer

This integer is an optional value that when provided next to the counter name
will represent the initial value of the counter (in counter-set, counter-reset
properties) or the value by which the counter should be incremented (in
counter-increment).

none
This is the initial value for all 3 counter-* properties. When this value is used
for counter-increment, the value of none of the counters are affected. When this
is used for the other two, no counter is created.

counter-
style

This specifies the style in which the counter value needs to be displayed. It
supports all values supported by the list-style-type property. If none is used
then the counter value is not printed at all.

connector-
string

This represents the string that must be placed between the values of two
different counter levels (like the "." in "2.1.1").

Remarks

Counters are not a new topic in CSS. It was a part of the CSS Level 2 Specifications (Revision 1
to be precise) itself and hence has very high browser support.

All browsers except IE6 and IE7 have support for CSS Counters.

Examples

https://riptutorial.com/ 110

Applying roman numerals styling to the counter output

CSS

body {
 counter-reset: item-counter;
}

.item {
 counter-increment: item-counter;
}

.item:before {
 content: counter(item-counter, upper-roman) ". "; /* by specifying the upper-roman as style
the output would be in roman numbers */
}

HTML

<div class='item'>Item No: 1</div>
<div class='item'>Item No: 2</div>
<div class='item'>Item No: 3</div>

In the above example, the counter's output would be displayed as I, II, III (roman numbers) instead
of the usual 1, 2, 3 as the developer has explicitly specified the counter's style.

Number each item using CSS Counter

CSS

body {
 counter-reset: item-counter; /* create the counter */
}
.item {
 counter-increment: item-counter; /* increment the counter every time an element with class
"item" is encountered */
}
.item-header:before {
 content: counter(item-counter) ". "; /* print the value of the counter before the header and
append a "." to it */
}

/* just for demo */

.item {
 border: 1px solid;
 height: 100px;
 margin-bottom: 10px;
}
.item-header {

https://riptutorial.com/ 111

 border-bottom: 1px solid;
 height: 40px;
 line-height: 40px;
 padding: 5px;
}
.item-content {
 padding: 8px;
}

HTML

<div class='item'>
 <div class='item-header'>Item 1 Header</div>
 <div class='item-content'>Lorem Ipsum Dolor Sit Amet....</div>
</div>
<div class='item'>
 <div class='item-header'>Item 2 Header</div>
 <div class='item-content'>Lorem Ipsum Dolor Sit Amet....</div>
</div>
<div class='item'>
 <div class='item-header'>Item 3 Header</div>
 <div class='item-content'>Lorem Ipsum Dolor Sit Amet....</div>
</div>

The above example numbers every "item" in the page and adds the item's number before its
header (using content property of .item-header element's :before pseudo). A live demo of this code
is available here.

Implementing multi-level numbering using CSS counters

CSS

ul {
 list-style: none;
 counter-reset: list-item-number; /* self nesting counter as name is same for all levels */
}
li {
 counter-increment: list-item-number;
}
li:before {
 content: counters(list-item-number, ".") " "; /* usage of counters() function means value of
counters at all higher levels are combined before printing */
}

HTML

 Level 1

https://riptutorial.com/ 112

https://jsfiddle.net/a7rmje3r/

 Level 1.1

 Level 1.1.1

 Level 2

 Level 2.1

 Level 2.1.1
 Level 2.1.2

 Level 3

The above is an example of multi-level numbering using CSS counters. It makes use of the self-
nesting concept of counters. Self nesting is a concept where if an element already has a counter
with the given name but is having to create another then it creates it as a child of the existing
counter. Here, the second level ul already inherits the list-item-number counter from its parent but
then has to create its own list-item-number (for its children li) and so creates list-item-number[1]
(counter for second level) and nests it under list-item-number[0] (counter for first level). Thus it
achieves the multi-level numbering.

The output is printed using the counters() function instead of the counter() function because the
counters() function is designed to prefix the value of all higher level counters (parent) when
printing the output.

Read Counters online: https://riptutorial.com/css/topic/2575/counters

https://riptutorial.com/ 113

https://riptutorial.com/css/topic/2575/counters

Chapter 17: CSS design patterns

Introduction

These examples are for documenting CSS-specific design patterns like BEM, OOCSS and
SMACSS.

These examples are NOT for documenting CSS frameworks like Bootstrap or Foundation.

Remarks

These examples are for documenting CSS-specific methodologies / design patterns.

These methodologies include but are not exclusive to the following:

BEM•
OOCSS•
SMACSS•

These examples are NOT for documenting CSS frameworks like Bootstrap or Foundation. While
you may include examples of how to apply one or more CSS methodology / design pattern with a
CSS framework, those examples are to focus on the methodologies / design patterns with that
particular framework and on the use of the framework itself.

Examples

BEM

BEM stands for Blocks, Elements and Modifiers. It's a methodology initially conceived by Russian
tech company Yandex, but which gained quite some traction among American & Western-
European web developers as well.

As the same implies, BEM metholology is all about componentization of your HTML and CSS code
into three types of components:

Blocks: standalone entities that are meaningful on their own

Examples are header, container, menu, checkbox & textbox

•

Elements: Part of blocks that have no standalone meaning and are semantically tied to their
blocks.

Examples are menu item, list item, checkbox caption & header title

•

Modifiers: Flags on a block or element, used to change appearance or behavior•

https://riptutorial.com/ 114

http://getbem.com/
https://www.smashingmagazine.com/2011/12/an-introduction-to-object-oriented-css-oocss/
https://smacss.com/
http://getbootstrap.com/
http://foundation.zurb.com/
http://getbem.com/
https://www.smashingmagazine.com/2011/12/an-introduction-to-object-oriented-css-oocss/
https://smacss.com/
http://getbootstrap.com/
http://foundation.zurb.com/
http://getbem.com/introduction/
https://en.wikipedia.org/wiki/Yandex

Examples are disabled, highlighted, checked, fixed, size big & color yellow

The goal of BEM is to keep optimize the readability, maintainability and flexibility of your CSS
code. The way to achieve this, is to apply the following rules.

Block styles are never dependent on other elements on a page•
Blocks should have a simple, short name and avoid _ or - characters•
When styling elements, use selectors of format blockname__elementname•
When styling modifiers, use selectors of format blockname--modifiername and
blockname__elementname--modifiername

•

Elements or blocks that have modifiers should inherit everything from the block or element it
is modifying except the properties the modifier is supposed to modify

•

Code example

If you apply BEM to your form elements, your CSS selectors should look something like this:

.form { } // Block

.form--theme-xmas { } // Block + modifier

.form--simple { } // Block + modifier

.form__input { } // Block > element

.form__submit { } // Block > element

.form__submit--disabled { } // Block > element + modifier

The corresponding HTML should look something like this:

<form class="form form--theme-xmas form--simple">
 <input class="form__input" type="text" />
 <input class="form__submit form__submit--disabled" type="submit" />
</form>

Read CSS design patterns online: https://riptutorial.com/css/topic/10823/css-design-patterns

https://riptutorial.com/ 115

https://riptutorial.com/css/topic/10823/css-design-patterns

Chapter 18: CSS Image Sprites

Syntax

//Using background-position
background: url("sprite-image.png");
background-position: -20px 50px;

•

//Background property shorthand
background: url("sprite-image.png") -20px 50px;

•

Remarks

For some use cases, sprites are slowly falling out of favor, being replaced by icon webfonts or
SVG images.

Examples

A Basic Implementation

What's an image sprite?

An image sprite is a single asset located within an image sprite sheet. An image sprite sheet is an
image file that contains more than one asset that can be extracted from it.

For example:

The image above is an image sprite sheet, and each one of those stars is a sprite within the sprite
sheet. These sprite sheets are useful because they improve performance by reducing the number
of HTTP requests a browser might have to make.

So how do you implement one? Here's some example code.

HTML

<div class="icon icon1"></div>
<div class="icon icon2"></div>

https://riptutorial.com/ 116

http://www.riptutorial.com/svg/topic/963/getting-started-with-svg
https://i.stack.imgur.com/XuyVW.png

<div class="icon icon3"></div>

CSS

.icon {
 background: url(“icons-sprite.png”);
 display: inline-block;
 height: 20px;
 width: 20px;
}
.icon1 {
 background-position: 0px 0px;
}
.icon2 {
 background-position: -20px 0px;
}
.icon3 {
 background-position: -40px 0px;
}

By using setting the sprite's width and height and by using the background-position property in
CSS (with an x and y value) you can easily extract sprites from a sprite sheet using CSS.

Read CSS Image Sprites online: https://riptutorial.com/css/topic/3690/css-image-sprites

https://riptutorial.com/ 117

https://riptutorial.com/css/topic/3690/css-image-sprites

Chapter 19: CSS Object Model (CSSOM)

Remarks

The CSS Object Model (CSSOM) is a specification on its own.

The current draft can be found here: https://www.w3.org/TR/cssom-1/

Examples

Introduction

The browser identifies tokens from stylesheet and coverts them into nodes which are linked into a
tree structure. The entire map of all the nodes with their associated styles of a page would be the
CSS Object Model.

To display the webpage, a web browser takes following steps.

The web browser examines your HTML and builds the DOM (Document Object Model).1.
The web browser examines your CSS and builds the CSSOM (CSS Object Model).2.
The web browser combines the DOM and the CSSOM to create a render tree. The web
browser displays your webpage.

3.

Adding a background-image rule via the CSSOM

To add a background-image rule via the CSSOM, first get a reference to the rules of the first

https://riptutorial.com/ 118

https://www.w3.org/TR/cssom-1/
http://i.stack.imgur.com/ZH4c7.png

stylesheet:

var stylesheet = document.styleSheets[0].cssRules;

Then, get a reference to the end of the stylesheet:

var end = stylesheet.length - 1;

Finally, insert a background-image rule for the body element at the end of the stylesheet:

stylesheet.insertRule("body { background-image:
url('http://cdn.sstatic.net/Sites/stackoverflow/img/favicon.ico'); }", end);

Read CSS Object Model (CSSOM) online: https://riptutorial.com/css/topic/4961/css-object-model--
cssom-

https://riptutorial.com/ 119

https://riptutorial.com/css/topic/4961/css-object-model--cssom-
https://riptutorial.com/css/topic/4961/css-object-model--cssom-

Chapter 20: Cursor Styling

Syntax

cursor: auto | default | none | context-menu | help | pointer | progress | wait | cell | crosshair |
text | vertical-text | alias | copy | move | no-drop | not-allowed | e-resize | n-resize | ne-resize |
nw-resize | s-resize | se-resize | sw-resize | w-resize | ew-resize | ns-resize | nesw-resize |
nwse-resize | col-resize | row-resize | all-scroll | zoom-in | zoom-out | grab | grabbing;

•

Examples

Changing cursor type

cursor: value;

Examples:

Value Description

none No cursor is rendered for the element

auto Default. The browser sets a cursor

help The cursor indicates that help is available

wait The cursor indicates that the program is busy

move The cursor indicates something is to be moved

pointer The cursor is a pointer and indicates a link

https://riptutorial.com/ 120

http://i.stack.imgur.com/E76ws.png

pointer-events

The pointer-events property allows for control over how HTML elements respond to mouse/touch
events.

.disabled {
 pointer-events: none;
}

In this example,

'none' prevents all click, state and cursor options on the specified HTML element [[1]]

Other valid values for HTMl elements are:

auto;•
inherit.•

https://css-tricks.com/almanac/properties/p/pointer-events/1.

Other resources:

https://developer.mozilla.org/en-US/docs/Web/CSS/pointer-events•

https://davidwalsh.name/pointer-events•

caret-color

The caret-color CSS property specifies the color of the caret, the visible indicator of the insertion
point in an element where text and other content is inserted by the user's typing or editing.

HTML

<input id="example" />

CSS

#example {
 caret-color: red;
}

Resources:

https://developer.mozilla.org/en-US/docs/Web/CSS/caret-color•

Read Cursor Styling online: https://riptutorial.com/css/topic/1742/cursor-styling

https://riptutorial.com/ 121

https://css-tricks.com/almanac/properties/p/pointer-events/
https://developer.mozilla.org/en-US/docs/Web/CSS/pointer-events
https://davidwalsh.name/pointer-events
https://developer.mozilla.org/en-US/docs/Web/CSS/caret-color
https://riptutorial.com/css/topic/1742/cursor-styling

Chapter 21: Custom Properties (Variables)

Introduction

CSS Variables allow authors to create reusable values which can be used throughout a CSS
document.

For example, it's common in CSS to reuse a single color throughout a document. Prior to CSS
Variables this would mean reusing the same color value many times throughout a document. With
CSS Variables the color value can be assigned to a variable and referenced in multiple places.
This makes changing values easier and is more semantic than using traditional CSS values.

Syntax

:root {} /* pseudo-class that allows for more global definition of variables */•
--variable-name: value; /* define variable */•
var(--variable-name, default-value) /* use defined variable with default value fallback */•

Remarks

CSS Variables are currently considered an experimental technology.

BROWSER SUPPORT / COMPATIBILITY

Firefox: Version 31+ (Enabled by default)

More info from Mozilla

Chrome: Version 49+ (Enabled by default).

"This feature can be enabled in Chrome Version 48 for testing by enabling the experimental Web
Platform feature. Enter chrome://flags/ in your Chrome address bar to access this setting."

IE: Not Supported.

Edge: Under Development

Safari: Version 9.1+

Examples

Variable Color

:root {

https://riptutorial.com/ 122

https://developer.mozilla.org/en-US/docs/Web/CSS/var()
https://developer.microsoft.com/en-us/microsoft-edge/platform/status/csscustompropertiesakacssvariables/

 --red: #b00;
 --blue: #4679bd;
 --grey: #ddd;
}
.Bx1 {
 color: var(--red);
 background: var(--grey);
 border: 1px solid var(--red);
}

Variable Dimensions

:root {
 --W200: 200px;
 --W10: 10px;
}
.Bx2 {
 width: var(--W200);
 height: var(--W200);
 margin: var(--W10);
}

Variable Cascading

CSS variables cascade in much the same way as other properties, and can be restated safely.

You can define variables multiple times and only the definition with the highest specificity will apply
to the element selected.

Assuming this HTML:

Button Green
Button Red
Button Hovered On

We can write this CSS:

.button {
 --color: green;
 padding: .5rem;
 border: 1px solid var(--color);
 color: var(--color);
}

.button:hover {
 --color: blue;
}

.button_red {
 --color: red;
}

And get this result:

https://riptutorial.com/ 123

Valid/Invalids

Naming When naming CSS variables, it contains only letters and dashes just like other CSS
properties (eg: line-height, -moz-box-sizing) but it should start with double dashes (--)

//These are Invalids variable names
--123color: blue;
--#color: red;
--bg_color: yellow
--$width: 100px;

//Valid variable names
--color: red;
--bg-color: yellow
--width: 100px;

CSS Variables are case sensitive.

/* The variable names below are all different variables */
--pcolor: ;
--Pcolor: ;
--pColor: ;

Empty Vs Space

/* Invalid */
 --color:;

/* Valid */
 --color: ; /* space is assigned */

Concatenations

 /* Invalid - CSS doesn't support concatenation*/
 .logo{
 --logo-url: 'logo';
 background: url('assets/img/' var(--logo-url) '.png');
 }

 /* Invalid - CSS bug */
 .logo{
 --logo-url: 'assets/img/logo.png';
 background: url(var(--logo-url));
 }

 /* Valid */
 .logo{
 --logo-url: url('assets/img/logo.png');
 background: var(--logo-url);
 }

https://riptutorial.com/ 124

https://i.stack.imgur.com/49U74.png

Careful when using Units

 /* Invalid */
 --width: 10;
 width: var(--width)px;

 /* Valid */
 --width: 10px;
 width: var(--width);

 /* Valid */
 --width: 10;
 width: calc(1px * var(--width)); /* multiply by 1 unit to convert */
 width: calc(1em * var(--width));

With media queries

You can re-set variables within media queries and have those new values cascade wherever they
are used, something that isn't possible with pre-processor variables.

Here, a media query changes the variables used to set up a very simple grid:

HTML

<div></div>
<div></div>
<div></div>
<div></div>

CSS

:root{
 --width: 25%;
 --content: 'This is desktop';
}
@media only screen and (max-width: 767px){
 :root{
 --width:50%;
 --content: 'This is mobile';
 }
}
@media only screen and (max-width: 480px){
 :root{
 --width:100%;
 }
}

div{
 width: calc(var(--width) - 20px);
 height: 100px;
}
div:before{
 content: var(--content);
}

/* Other Styles */

https://riptutorial.com/ 125

body {
 padding: 10px;
}

div{
 display: flex;
 align-items: center;
 justify-content: center;
 font-weight:bold;
 float:left;
 margin: 10px;
 border: 4px solid black;
 background: red;
}

You can try resizing the window in this CodePen Demo

Here's an animated screenshot of the resizing in action:

Read Custom Properties (Variables) online: https://riptutorial.com/css/topic/1755/custom-
properties--variables-

https://riptutorial.com/ 126

https://codepen.io/mkumaran/pen/BZaXvz
https://i.stack.imgur.com/GXWRP.gif
https://riptutorial.com/css/topic/1755/custom-properties--variables-
https://riptutorial.com/css/topic/1755/custom-properties--variables-

Chapter 22: Feature Queries

Syntax

@supports [condition] { /* CSS rules to apply */ }•

Parameters

Parameter Details

(property:
value)

Evaluates true if the browser can handle the CSS rule. The parenthesis
around the rule are required.

and Returns true only if both the previous and next conditions are true.

not Negates the next condition

or Returns true if either the previous or next condition is true.

(...) Groups conditions

Remarks

Feature detection using @supports is supported in Edge, Chrome, Firefox, Opera, and Safari 9 and
up.

Examples

Basic @supports usage

@supports (display: flex) {
 /* Flexbox is available, so use it */
 .my-container {
 display: flex;
 }
}

In terms of syntax, @supports is very similar to @media, but instead of detecting screen size and
orientation, @supports will detect whether the browser can handle a given CSS rule.

Rather than doing something like @supports (flex), notice that the rule is @supports (display: flex)
.

Chaining feature detections

https://riptutorial.com/ 127

To detect multiple features at once, use the and operator.

@supports (transform: translateZ(1px)) and (transform-style: preserve-3d) and (perspective:
1px) {
 /* Probably do some fancy 3d stuff here */
}

There is also an or operator and a not operator:

@supports (display: flex) or (display: table-cell) {
 /* Will be used if the browser supports flexbox or display: table-cell */
}
@supports not (-webkit-transform: translate(0, 0, 0)) {
 /* Will *not* be used if the browser supports -webkit-transform: translate(...) */
}

For the ultimate @supports experience, try grouping logical expressions with parenthesis:

@supports ((display: block) and (zoom: 1)) or ((display: flex) and (not (display: table-
cell))) or (transform: translateX(1px)) {
 /* ... */
}

This will work if the browser

Supports display: block AND zoom: 1, or1.
Supports display: flex AND NOT display: table-cell, or2.
Supports transform: translateX(1px).3.

Read Feature Queries online: https://riptutorial.com/css/topic/5024/feature-queries

https://riptutorial.com/ 128

https://riptutorial.com/css/topic/5024/feature-queries

Chapter 23: Filter Property

Syntax

filter: none (default value)•
filter: initial (defaults to none);•
filter: inherit (defaults to parent value);•
filter: blur(px)•
filter: brightness(number | %)•
filter: contrast(number | %)•
filter: drop-shadow(horizontal-shadow-px vertical-shadow-px shadow-blur-px shadow- -
spread color)

•

filter: greyscale(number | %)•
filter: hue-rotate(deg)•
filter: invert(number | %)•
filter: opacity(number | %)•
filter: saturate(number | %)•
filter: sepia(number | %)•

Parameters

Value Description

blur(x) Blurs the image by x pixels.

brightness(x)
Brightens the image at any value above 1.0 or 100%. Below that, the
image will be darkened.

contrast(x)
Provides more contrast to the image at any value above 1.0 or 100%.
Below that, the image will get less saturated.

drop-shadow(h, v,
x, y, z)

Gives the image a drop-shadow. h and v can have negative values. x,
y, and z are optional.

greyscale(x) Shows the image in greyscale, with a maximum value of 1.0 or 100%.

hue-rotate(x) Applies a hue-rotation to the image.

invert(x) Inverts the color of the image with a maximum value of 1.0 or 100%.

opacity(x)
Sets how opaque/transparent the image is with a maximum value of
1.0 or 100%.

saturate(x)
Saturates the image at any value above 1.0 or 100%. Below that, the
image will start to de-saturate.

https://riptutorial.com/ 129

Value Description

sepia(x) Converts the image to sepia with a maximum value of 1.0 or 100%.

Remarks

Since filter is an experimental feature, you should use the -webkit prefix. It may change in
syntax and behavior, but the changes are probably going to be small.

1.

It might not be supported in older versions of major browsers. It might be entirely
unsupported in mobile browsers.

2.

Due to its relatively limited support, try to use box-shadow instead of filter: drop-shadow().
Use opacity instead of filter: opacity().

3.

It can be animated through Javascript/jQuery. For Javascript, use object.style.WebkitFilter.4.

Check W3Schools or MDN for more info.5.

W3Schools also has a demo page for all the different type of filter values.6.

Examples

Drop Shadow (use box-shadow instead if possible)

HTML

<p>My shadow always follows me.</p>

CSS

p {
 -webkit-filter: drop-shadow(10px 10px 1px green);
 filter: drop-shadow(10px 10px 1px green);
}

Result

Multiple Filter Values

To use multiple filters, separate each value with a space.

HTML

https://riptutorial.com/ 130

http://www.w3schools.com/cssref/css3_pr_filter.asp
https://developer.mozilla.org/en/docs/Web/CSS/filter
http://www.w3schools.com/cssref/playit.asp?filename=playcss_filter&preval=hue-rotate(90deg)
http://i.stack.imgur.com/70t2C.png

CSS

img {
 -webkit-filter: brightness(200%) grayscale(100%) sepia(100%) invert(100%);
 filter: brightness(200%) grayscale(100%) sepia(100%) invert(100%);
}

Result

Hue Rotate

HTML

CSS

img {
 -webkit-filter: hue-rotate(120deg);
 filter: hue-rotate(120deg);
}

Result

https://riptutorial.com/ 131

http://i.stack.imgur.com/pxMPC.png

Invert Color

HTML

<div></div>

CSS

div {
 width: 100px;
 height: 100px;
 background-color: white;
 -webkit-filter: invert(100%);
 filter: invert(100%);
}

Result

Turns from white to black.

Blur

HTML

CSS

https://riptutorial.com/ 132

http://i.stack.imgur.com/CYvur.png
http://i.stack.imgur.com/tO8fB.png

img {
 -webkit-filter: blur(1px);
 filter: blur(1px);
}

Result

Makes you wanna rub your glasses.

Read Filter Property online: https://riptutorial.com/css/topic/1567/filter-property

https://riptutorial.com/ 133

http://i.stack.imgur.com/XYAHi.png
https://riptutorial.com/css/topic/1567/filter-property

Chapter 24: Flexible Box Layout (Flexbox)

Introduction

The Flexible Box module, or just 'flexbox' for short, is a box model designed for user interfaces,
and it allows users to align and distribute space among items in a container such that elements
behave predictably when the page layout must accommodate different, unknown screen sizes. A
flex container expands items to fill available space and shrinks them to prevent overflow.

Syntax

display: flex;•
flex-direction: row | row-reverse | column | column-reverse;•
flex-wrap: nowrap | wrap | wrap-reverse;•
flex-flow: <'flex-direction'> || <'flex-wrap'>•
justify-content: flex-start | flex-end | center | space-between | space-around;•
align-items: flex-start | flex-end | center | baseline | stretch;•
align-content: flex-start | flex-end | center | space-between | space-around | stretch;•
order: <integer>;•
flex-grow: <number>; /* default 0 */•
flex-shrink: <number>; /* default 1 */•
flex-basis: <length> | auto; /* default auto */•
flex: none | [<'flex-grow'> <'flex-shrink'>? || <'flex-basis'>]•
align-self: auto | flex-start | flex-end | center | baseline | stretch;•

Remarks

Vender Prefixes

display: -webkit-box; /* Chrome <20 */•
display: -webkit-flex; /* Chrome 20+ */•
display: -moz-box; /* Firefox */•
display: -ms-flexbox; /* IE */•
display: flex; /* Modern browsers */•

Resources

A Complete Guide to Flexbox•
Solved by Flexbox•
What the Flexbox?!•
Flexbox in 5 minutes•
Flexbugs•

https://riptutorial.com/ 134

https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://philipwalton.github.io/solved-by-flexbox/
http://www.flexbox.io/
http://flexboxin5.com/
https://github.com/philipwalton/flexbugs

Examples

Sticky Variable-Height Footer

This code creates a sticky footer. When the content doesn't reach the end of the viewport, the
footer sticks to the bottom of the viewport. When the content extends past the bottom of the
viewport, the footer is also pushed out of the viewport. View Result

HTML:

<div class="header">
 <h2>Header</h2>
</div>

<div class="content">
 <h1>Content</h1>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer nec odio. Praesent
libero. Sed cursus ante dapibus diam. Sed nisi. Nulla quis sem at nibh elementum imperdiet.
Duis sagittis ipsum. Praesent mauris. Fusce nec tellus sed augue semper porta. Mauris massa.
Vestibulum lacinia arcu eget nulla. Class aptent taciti sociosqu ad litora torquent per
conubia nostra, per inceptos himenaeos. Curabitur sodales ligula in libero. </p>
</div>

<div class="footer">
 <h4>Footer</h4>
</div>

CSS:

html, body {
 height: 100%;
}

body {
 display: flex;
 flex-direction: column;
}

.content {
 /* Include `0 auto` for best browser compatibility. */
 flex: 1 0 auto;
}

.header, .footer {
 background-color: grey;
 color: white;
 flex: none;
}

Holy Grail Layout using Flexbox

Holy Grail layout is a layout with a fixed height header and footer, and a center with 3 columns.
The 3 columns include a fixed width sidenav, a fluid center, and a column for other content like
ads (the fluid center appears first in the markup). CSS Flexbox can be used to achieve this with a

https://riptutorial.com/ 135

https://jsfiddle.net/0t1f84tL/
http://alistapart.com/article/holygrail

very simple markup:

HTML Markup:

<div class="container">
 <header class="header">Header</header>
 <div class="content-body">
 <main class="content">Content</main>
 <nav class="sidenav">Nav</nav>
 <aside class="ads">Ads</aside>
 </div>
 <footer class="footer">Footer</footer>
</div>

CSS:

body {
 margin: 0;
 padding: 0;
}

.container {
 display: flex;
 flex-direction: column;
 height: 100vh;
}

.header {
 flex: 0 0 50px;
}

.content-body {
 flex: 1 1 auto;

 display: flex;
 flex-direction: row;
}

.content-body .content {
 flex: 1 1 auto;
 overflow: auto;
}

.content-body .sidenav {
 order: -1;
 flex: 0 0 100px;
 overflow: auto;
}

.content-body .ads {
 flex: 0 0 100px;
 overflow: auto;
}

.footer {
 flex: 0 0 50px;
}

https://riptutorial.com/ 136

Demo

Perfectly aligned buttons inside cards with flexbox

It's a regular pattern in design these days to vertically align call to actions inside its containing
cards like this:

This can be achieved using a special trick with flexbox

HTML

<div class="cards">
 <div class="card">
 <p>Lorem ipsum Magna proident ex anim dolor ullamco pariatur reprehenderit culpa esse enim
mollit labore dolore voluptate ullamco et ut sed qui minim.</p>
 <p><button>Action</button></p>
 </div>
 <div class="card">
 <p>Lorem ipsum Magna proident ex anim dolor ullamco pariatur reprehenderit culpa esse enim
mollit labore dolore voluptate ullamco et ut sed qui minim.</p>
 <p>Lorem ipsum Magna proident ex anim dolor ullamco pariatur reprehenderit culpa esse enim
mollit labore dolore voluptate ullamco et ut sed qui minim.</p>
 <p>Lorem ipsum Magna proident ex anim dolor ullamco pariatur reprehenderit culpa esse enim
mollit labore dolore voluptate ullamco et ut sed qui minim.</p>
 <p>Lorem ipsum Magna proident ex anim dolor ullamco pariatur reprehenderit culpa esse enim
mollit labore dolore voluptate ullamco et ut sed qui minim.</p>
 <p><button>Action</button></p>
 </div>
</div>

First of all, we use CSS to apply display: flex; to the container. This will create 2 columns equal
in height with the content flowing naturally inside it

https://riptutorial.com/ 137

https://jsfiddle.net/adityarb88/hek6ms0x/
http://i.stack.imgur.com/M2aZf.png

CSS

.cards {
 display: flex;
}
.card {
 border: 1px solid #ccc;
 margin: 10px 10px;
 padding: 0 20px;
}
button {
 height: 40px;
 background: #fff;
 padding: 0 40px;
 border: 1px solid #000;
}
p:last-child {
 text-align: center;
}

The layout will change and become like this:

In order to move the buttons to the bottom of the block, we need to apply display: flex; to the
card itself with the direction set to column. After that, we should select the last element inside the
card and set the margin-top to auto. This will push the last paragraph to the bottom of the card and
achieve the required result.

Final CSS:

.cards {
 display: flex;
}
.card {
 border: 1px solid #ccc;
 margin: 10px 10px;
 padding: 0 20px;

https://riptutorial.com/ 138

http://i.stack.imgur.com/yTA8E.png

 display: flex;
 flex-direction: column;
}
button {
 height: 40px;
 background: #fff;
 padding: 0 40px;
 border: 1px solid #000;
}
p:last-child {
 text-align: center;
 margin-top: auto;
}

Dynamic Vertical and Horizontal Centering (align-items, justify-content)

Simple Example (centering a single element)

HTML

<div class="aligner">
 <div class="aligner-item">…</div>
</div>

CSS

.aligner {
 display: flex;
 align-items: center;
 justify-content: center;
}

.aligner-item {
 max-width: 50%; /*for demo. Use actual width instead.*/
}

Here is a demo.

Reasoning

Property Value Description

align-
items center

This centers the elements along the axis other than the one specified
by flex-direction, i.e., vertical centering for a horizontal flexbox and
horizontal centering for a vertical flexbox.

This centers the elements along the axis specified by flex-direction. justify-
content center

https://riptutorial.com/ 139

http://codepen.io/asim-coder/pen/ZOobqz

Property Value Description

I.e., for a horizontal (flex-direction: row) flexbox, this centers
horizontally, and for a vertical flexbox (flex-direction: column) flexbox,
this centers vertically)

Individual Property Examples

All of the below styles are applied onto this simple layout:

<div id="container">
 <div></div>
 <div></div>
 <div></div>
</div>

where #container is the flex-box.

Example: justify-content: center on a horizontal flexbox

CSS:

div#container {
 display: flex;
 flex-direction: row;
 justify-content: center;
}

Outcome:

https://riptutorial.com/ 140

Here is a demo.

Example: justify-content: center on a vertical flexbox

CSS:

div#container {
 display: flex;
 flex-direction: column;
 justify-content: center;
}

Outcome:

https://riptutorial.com/ 141

https://jsfiddle.net/d6pc5bmd/

Here is a demo.

Example: align-content: center on a horizontal flexbox

CSS:

div#container {
 display: flex;
 flex-direction: row;
 align-items: center;
}

Outcome:

https://riptutorial.com/ 142

https://jsfiddle.net/d6pc5bmd/1/

Here is a demo.

Example: align-content: center on a vertical flexbox

CSS:

div#container {
 display: flex;
 flex-direction: column;
 align-items: center;
}

Outcome:

https://riptutorial.com/ 143

https://jsfiddle.net/d6pc5bmd/2/

Here is a demo.

Example: Combination for centering both on horizontal
flexbox

div#container {
 display: flex;
 flex-direction: row;
 justify-content: center;
 align-items: center;
}

Outcome:

https://riptutorial.com/ 144

https://jsfiddle.net/d6pc5bmd/3/

Here is a demo.

Example: Combination for centering both on vertical flexbox

div#container {
 display: flex;
 flex-direction: column;
 justify-content: center;
 align-items: center;
}

Outcome:

https://riptutorial.com/ 145

https://jsfiddle.net/d6pc5bmd/4/

Here is a demo.

Same height on nested containers

This code makes sure that all nested containers are always the same height. This is done by
assuring that all nested elements are the same height as the containing parrent div. See working
example: https://jsfiddle.net/3wwh7ewp/

This effect is achieved due to the property align-items being set to stretch by default.

HTML

<div class="container">
 <div style="background-color: red">
 Some

 data

 to make

 a height

 </div>
 <div style="background-color: blue">

https://riptutorial.com/ 146

https://jsfiddle.net/d6pc5bmd/5/
https://jsfiddle.net/3wwh7ewp/
https://jsfiddle.net/3wwh7ewp/
https://jsfiddle.net/3wwh7ewp/

 Fewer

 lines

 </div>
</div>

CSS

.container {
 display: flex;
 align-items: stretch; // Default value
}

Note: Does not work on IE versions under 10

Optimally fit elements to their container

One of the nicest features of flexbox is to allow optimally fitting containers to their parent element.

Live demo.

HTML:

<div class="flex-container">
 <div class="flex-item">1</div>
 <div class="flex-item">2</div>
 <div class="flex-item">3</div>
 <div class="flex-item">4</div>
 <div class="flex-item">5</div>
</div>

CSS:

.flex-container {
 background-color: #000;
 height: 100%;
 display:flex;
 flex-direction: row;
 flex-wrap: wrap;
 justify-content: flex-start;
 align-content: stretch;
 align-items: stretch;
}

.flex-item {
 background-color: #ccf;
 margin: 0.1em;
 flex-grow: 1;
 flex-shrink: 0;
 flex-basis: 200px; /* or % could be used to ensure a specific layout */
}

Outcome:

Columns adapt as screen is resized.

https://riptutorial.com/ 147

http://caniuse.com/#search=flexbox
https://jsfiddle.net/6gfogoqk/

Read Flexible Box Layout (Flexbox) online: https://riptutorial.com/css/topic/445/flexible-box-layout-
-flexbox-

https://riptutorial.com/ 148

http://i.stack.imgur.com/eGtf5.png
https://riptutorial.com/css/topic/445/flexible-box-layout--flexbox-
https://riptutorial.com/css/topic/445/flexible-box-layout--flexbox-

Chapter 25: Floats

Syntax

clear: none | left | right | both | inline-start | inline-end;•
float: left | right | none | inline-start | inline-end;•

Remarks

As float implies the use of the block layout, it modifies the computed value of the
display values in some cases [1]

[1]: https://developer.mozilla.org/en-US/docs/Web/CSS/float MDN

Examples

Float an Image Within Text

The most basic use of a float is having text wrap around an image. The below code will produce
two paragraphs and an image, with the second paragraph flowing around the image. Notice that it
is always content after the floated element that flows around the floated element.

HTML:

<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer nec odio. Praesent libero.
Sed cursus ante dapibus diam. Sed nisi. Nulla quis sem at nibh elementum imperdiet. Duis
sagittis ipsum. Praesent mauris. Fusce nec tellus sed augue semper porta. Mauris massa.
Vestibulum lacinia arcu eget nulla. </p>

<p>Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos.
Curabitur sodales ligula in libero. Sed dignissim lacinia nunc. Curabitur tortor. Pellentesque
nibh. Aenean quam. In scelerisque sem at dolor. Maecenas mattis. Sed convallis tristique sem.
Proin ut ligula vel nunc egestas porttitor. Morbi lectus risus, iaculis vel, suscipit quis,
luctus non, massa. Fusce ac turpis quis ligula lacinia aliquet. </p>

CSS:

img {
 float:left;
 margin-right:1rem;
}

This will be the output

https://riptutorial.com/ 149

https://developer.mozilla.org/en-US/docs/Web/CSS/float

Codepen Link

Simple Two Fixed-Width Column Layout

A simple two-column layout consists of two fixed-width, floated elements. Note that the sidebar
and content area are not the same height in this example. This is one of the tricky parts with multi-
column layouts using floats, and requires workarounds to make multiple columns appear to be the
same height.

HTML:

https://riptutorial.com/ 150

http://i.stack.imgur.com/srUS7.png
http://codepen.io/vishak-kavalur/pen/pbxvLx

<div class="wrapper">

<div class="sidebar">
 <h2>Sidebar</h2>

 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer nec odio.</p>
</div>

<div class="content">
 <h1>Content</h1>

 <p>Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos
himenaeos. Curabitur sodales ligula in libero. Sed dignissim lacinia nunc. Curabitur tortor.
Pellentesque nibh. Aenean quam. In scelerisque sem at dolor. Maecenas mattis. Sed convallis
tristique sem. Proin ut ligula vel nunc egestas porttitor. Morbi lectus risus, iaculis vel,
suscipit quis, luctus non, massa. Fusce ac turpis quis ligula lacinia aliquet. </p>
</div>

</div>

CSS:

.wrapper {
 width:600px;
 padding:20px;
 background-color:pink;

 /* Floated elements don't use any height. Adding "overflow:hidden;" forces the
 parent element to expand to contain its floated children. */
 overflow:hidden;
}

.sidebar {
 width:150px;
 float:left;
 background-color:blue;
}

.content {
 width:450px;
 float:right;
 background-color:yellow;
}

Simple Three Fixed-Width Column Layout

HTML:

<div class="wrapper">
 <div class="left-sidebar">
 <h1>Left Sidebar</h1>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. </p>
 </div>
 <div class="content">
 <h1>Content</h1>
 <p>Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos
himenaeos. Curabitur sodales ligula in libero. Sed dignissim lacinia nunc. Curabitur tortor.
Pellentesque nibh. Aenean quam. In scelerisque sem at dolor. Maecenas mattis. Sed convallis

https://riptutorial.com/ 151

tristique sem. Proin ut ligula vel nunc egestas porttitor. Morbi lectus risus, iaculis vel,
suscipit quis, luctus non, massa. </p>
 </div>
 <div class="right-sidebar">
 <h1>Right Sidebar</h1>
 <p>Fusce ac turpis quis ligula lacinia aliquet.</p>
 </div>
</div>

CSS:

.wrapper {
 width:600px;
 background-color:pink;
 padding:20px;

 /* Floated elements don't use any height. Adding "overflow:hidden;" forces the
 parent element to expand to contain its floated children. */
 overflow:hidden;
}

.left-sidebar {
 width:150px;
 background-color:blue;
 float:left;
}

.content {
 width:300px;
 background-color:yellow;
 float:left;
}

.right-sidebar {
 width:150px;
 background-color:green;
 float:right;
}

Two-Column Lazy/Greedy Layout

This layout uses one floated column to create a two-column layout with no defined widths. In this
example the left sidebar is "lazy," in that it only takes up as much space as it needs. Another way
to say this is that the left sidebar is "shrink-wrapped." The right content column is "greedy," in that
it takes up all the remaining space.

HTML:

<div class="sidebar">
<h1>Sidebar</h1>

</div>

<div class="content">
<h1>Content</h1>
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer nec odio. Praesent libero.

https://riptutorial.com/ 152

Sed cursus ante dapibus diam. Sed nisi. Nulla quis sem at nibh elementum imperdiet. Duis
sagittis ipsum. Praesent mauris. Fusce nec tellus sed augue semper porta. Mauris massa.
Vestibulum lacinia arcu eget nulla. </p>
<p>Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos.
Curabitur sodales ligula in libero. Sed dignissim lacinia nunc. Curabitur tortor. Pellentesque
nibh. Aenean quam. In scelerisque sem at dolor. Maecenas mattis. Sed convallis tristique sem.
Proin ut ligula vel nunc egestas porttitor. Morbi lectus risus, iaculis vel, suscipit quis,
luctus non, massa. Fusce ac turpis quis ligula lacinia aliquet. Mauris ipsum. Nulla metus
metus, ullamcorper vel, tincidunt sed, euismod in, nibh. </p>
</div>

CSS:

.sidebar {
 /* `display:table;` shrink-wraps the column */
 display:table;
 float:left;
 background-color:blue;
}

.content {
 /* `overflow:hidden;` prevents `.content` from flowing under `.sidebar` */
 overflow:hidden;
 background-color:yellow;
}

Fiddle

clear property

The clear property is directly related to floats. Property Values:

none - Default. Allows floating elements on both sides•
left - No floating elements allowed on the left side•
right - No floating elements allowed on the right side•
both - No floating elements allowed on either the left or the right side•
initial - Sets this property to its default value. Read about initial•
inherit - Inherits this property from its parent element. Read about inherit•

<html>
<head>
<style>
img {
 float: left;
}

p.clear {
 clear: both;
}
</style>
</head>
<body>

<p>Lorem ipsoum Lorem ipsoum Lorem ipsoum Lorem ipsoum Lorem ipsoum Lorem ipsoum Lorem ipsoum

https://riptutorial.com/ 153

https://jsfiddle.net/ooprqsL0/

Lorem ipsoum Lorem ipsoum Lorem ipsoum Lorem ipsoum Lorem ipsoum </p>
<p class="clear">Lorem ipsoum Lorem ipsoum Lorem ipsoum Lorem ipsoum Lorem ipsoum Lorem ipsoum
Lorem ipsoum Lorem ipsoum Lorem ipsoum Lorem ipsoum Lorem ipsoum Lorem ipsoum </p>

</body>
</html>

Clearfix

The clearfix hack is a popular way to contain floats (N. Gallagher aka @necolas)

Not to be confused with the clear property, clearfix is a concept (that is also related to floats, thus
the possible confusion). To contain floats, you've to add .cf or .clearfix class on the container (
the parent) and style this class with a few rules described below.

3 versions with slightly different effects (sources :A new micro clearfix hack by N. Gallagher and
clearfix reloaded by T. J. Koblentz):

Clearfix (with top margin collapsing of
contained floats still occurring)

.cf:after {
 content: "";
 display: table;
}

.cf:after {
 clear: both;
}

Clearfix also preventing top margin
collapsing of contained floats

/**
 * For modern browsers
 * 1. The space content is one way to avoid an Opera bug when the
 * contenteditable attribute is included anywhere else in the document.
 * Otherwise it causes space to appear at the top and bottom of elements
 * that are clearfixed.
 * 2. The use of `table` rather than `block` is only necessary if using
 * `:before` to contain the top-margins of child elements.
 */
.cf:before,
.cf:after {
 content: " "; /* 1 */
 display: table; /* 2 */
}

https://riptutorial.com/ 154

http://www.riptutorial.com/css/example/11342/clear-property
http://nicolasgallagher.com/micro-clearfix-hack/
http://yuiblog.com/blog/2010/09/27/clearfix-reloaded-overflowhidden-demystified/

.cf:after {
 clear: both;
}

Clearfix with support of outdated browsers
IE6 and IE7

.cf:before,

.cf:after {
 content: " ";
 display: table;
}

.cf:after {
 clear: both;
}

/**
 * For IE 6/7 only
 * Include this rule to trigger hasLayout and contain floats.
 */
.cf {
 *zoom: 1;
}

Codepen showing clearfix effect

Other resource: Everything you know about clearfix is wrong (clearfix and BFC - Block Formatting
Context while hasLayout relates to outdated browsers IE6 maybe 7)

In-line DIV using float

The div is a block-level element, i.e it occupies the whole of the page width and the siblings are
place one below the other irrespective of their width.

<div>
 <p>This is DIV 1</p>
</div>
<div>
 <p>This is DIV 2</p>
</div>

The output of the following code will be

https://riptutorial.com/ 155

http://codepen.io/PhilippeVay/pen/OXEqgW?editors=0100
http://www.cssmojo.com/clearfix_block-formatting-context_and_hasLayout/

We can make them in-line by adding a float css property to the div.

HTML:

<div class="outer-div">
 <div class="inner-div1">
 <p>This is DIV 1</p>
 </div>
 <div class="inner-div2">
 <p>This is DIV 2</p>
 </div>
</div>

CSS

.inner-div1 {
 width: 50%;
 margin-right:0px;
 float:left;

https://riptutorial.com/ 156

https://i.stack.imgur.com/qgqNg.png

 background : #337ab7;
 padding:50px 0px;
}

.inner-div2 {
 width: 50%;
 margin-right:0px;
 float:left;
 background : #dd2c00;
 padding:50px 0px;
}

p {
 text-align:center;
}

Codepen Link

Use of overflow property to clear floats

Setting overflow value to hidden,auto or scroll to an element, will clear all the floats within that
element.

Note: using overflow:scroll will always show the scrollbox

Read Floats online: https://riptutorial.com/css/topic/405/floats

https://riptutorial.com/ 157

https://i.stack.imgur.com/gy6fO.png
http://codepen.io/vishak-kavalur/pen/bZxbBy
https://riptutorial.com/css/topic/405/floats

Chapter 26: Fragmentation

Syntax

page-break-after: auto | always | avoid | left | right | initial | inherit;•
page-break-before: auto | always | avoid | left | right | initial | inherit;•
page-break-inside: auto | avoid | initial | inherit;•

Parameters

Value Description

auto Default. Automatic page breaks

always Always insert a page break

avoid Avoid page break (if possible)

left Insert page breaks so that the next page is formatted as a left page

right Insert page breaks so that the next page is formatted as a right page

initial Sets this property to its default value.

inherit Inherits this property from its parent element.

Remarks

There is no page-break property in CSS. Only the 3 properties (page-break-before, page-break-
after, page-break-inside).

Related: orphans, widows.

Examples

Media print page-break

@media print {
 p {
 page-break-inside: avoid;
 }
 h1 {
 page-break-before: always;
 }
 h2 {
 page-break-after: avoid;

https://riptutorial.com/ 158

 }
}

This code does 3 things:

it prevents a page break inside any p tags, meaning a paragraph will never be broken in two
pages, if possible.

•

it forces a page-break-before in all h1 headings, meaning that before every h1 occurrence,
there will be a page break.

•

it prevents page-breaks right after any h2•

Read Fragmentation online: https://riptutorial.com/css/topic/4316/fragmentation

https://riptutorial.com/ 159

https://riptutorial.com/css/topic/4316/fragmentation

Chapter 27: Functions

Syntax

<calc()> = calc(<calc-sum>)•
<calc-sum> = <calc-product> [['+' | '-'] <calc-product>]*•
<calc-product> = <calc-value> ['*' <calc-value> | '/' <number>]*•
<calc-value> = <number> | <dimension> | <percentage> | (<calc-sum>)•

Remarks

For calc(), white space is required around the "-" and "+" operators, but not the "*" or "/"
operators.

All units must be of the same type; trying to multiply a height by a time duration, for example, is
invalid.

Examples

calc() function

Accepts a mathematical expression and returns a numerical value.

It is especially useful when working with different types of units (e.g. subtracting a px value from a
percentage) to calculate the value of an attribute.

+, -, /, and * operators can all be used, and parentheses can be added to specify the order of
operations if necessary.

Use calc() to calculate the width of a div element:

#div1 {
 position: absolute;
 left: 50px;
 width: calc(100% - 100px);
 border: 1px solid black;
 background-color: yellow;
 padding: 5px;
 text-align: center;
}

Use calc() to determine the position of a background-image:

background-position: calc(50% + 17px) calc(50% + 10px), 50% 50%;

Use calc() to determine the height of an element:

https://riptutorial.com/ 160

height: calc(100% - 20px);

attr() function

Returns the value of an attribute of the selected element.

Below is a blockquote element which contains a character inside a data-* attribute which CSS can
use (e.g. inside the ::before and ::after pseudo-element) using this function.

<blockquote data-mark='"'></blockquote>

In the following CSS block, the character is appended before and after the text inside the element:

blockquote[data-mark]::before,
blockquote[data-mark]::after {
 content: attr(data-mark);
}

linear-gradient() function

Creates a image representing a linear gradient of colors.

linear-gradient(0deg, red, yellow 50%, blue);

This creates a gradient going from bottom to top, with colors starting at red, then yellow at 50%,
and finishing in blue.

radial-gradient() function

Creates an image representing a gradient of colors radiating from the center of the gradient

radial-gradient(red, orange, yellow) /*A gradient coming out from the middle of the
gradient, red at the center, then orange, until it is finally yellow at the edges*/

var() function

The var() function allows CSS variables to be accessed.

/* set a variable */
:root {
 --primary-color: blue;
}

/* access variable */
selector {
 color: var(--primary-color);
}

This feature is currently under development. Check caniuse.com for the latest browser support.

https://riptutorial.com/ 161

http://stackoverflow.com/documentation/html/1182/html5-data-attribute/6305/definition-and-usage#t=201607221052072794425
http://stackoverflow.com/documentation/html/1182/html5-data-attribute/6305/definition-and-usage#t=201607221052072794425
http://stackoverflow.com/documentation/css/611/selectors/5848/pseudo-elements#t=201607221053022325031
http://caniuse.com/#feat=css-variables

Read Functions online: https://riptutorial.com/css/topic/2214/functions

https://riptutorial.com/ 162

https://riptutorial.com/css/topic/2214/functions

Chapter 28: Grid

Introduction

Grid layout is a new and powerful CSS layout system that allows to divide a web page content into
rows and columns in an easy way.

Remarks

CSS Grid Layout Module Level 1 is, as of 9 September 2016, a W3C Candidate
Recommendation. It is considered to be in the Testing stage (
https://www.w3.org/Style/CSS/current-work).

As of 3 July 2017, Microsoft's Internet Explorer 10 and 11 and Edge browsers only support an
older version of the specification using a vendor prefix.

Examples

Basic Example

Property Possible Values

display grid / inline-grid

The CSS Grid is defined as a display property. It applies to a parent element and its immediate
children only.

Consider the following markup:

<section class="container">
 <div class="item1">item1</div>
 <div class="item2">item2</div>
 <div class="item3">item3</div>
 <div class="item4">item4</div>
</section>

The easiest way to define the markup structure above as a grid is to simply set its display property
to grid:

.container {
 display: grid;
}

However, doing this will invariably cause all the child elements to collapse on top of one another.
This is because the children do not currently know how to position themselves within the grid. But
we can explicitly tell them.

https://riptutorial.com/ 163

https://www.w3.org/TR/css-grid-1/
https://www.w3.org/Style/CSS/current-work)

First we need to tell the grid element .container how many rows and columns will make up its
structure and we can do this using the grid-columns and grid-rows properties (note the
pluralisation):

.container {
 display: grid;
 grid-columns: 50px 50px 50px;
 grid-rows: 50px 50px;
}

However, that still doesn't help us much because we need to give an order to each child element.
We can do this by specifying the grid-row and grid-column values which will tell it where it sits in
the grid:

.container .item1 {
 grid-column: 1;
 grid-row: 1;
}
.container .item2 {
 grid-column: 2;
 grid-row: 1;
}
.container .item3 {
 grid-column: 1;
 grid-row: 2;
}
.container .item4 {
 grid-column: 2;
 grid-row: 2;
}

By giving each item a column and row value it identifies the items order within the container.

View a working example on JSFiddle. You'll need to view this in IE10, IE11 or Edge for it to work
as these are currently the only browsers supporting Grid Layout (with vendor prefix -ms-) or enable
a flag in Chrome, Opera and Firefox according to caniuse in order to test with them.

Read Grid online: https://riptutorial.com/css/topic/2152/grid

https://riptutorial.com/ 164

https://jsfiddle.net/fexfwkkv/3/
http://caniuse.com/#feat=css-grid
https://riptutorial.com/css/topic/2152/grid

Chapter 29: Inheritance

Syntax

property: inherit;•

Examples

Automatic inheritance

Inheritance the a fundamental mechanism of CSS by which the computed values of some
properties of an element are applied to its' children. This is particularly useful when you want to set
a global style to your elements rather than having to set said properties to each and every element
in your markup.

Common properties that are automatically inherited are: font, color, text-align, line-height.

Assume the following stylesheet:

#myContainer {
 color: red;
 padding: 5px;
}

This will apply color: red not only to the <div> element but also to the <h3> and <p> elements.
However, due to the nature of padding its value will not be inherited to those elements.

<div id="myContainer">
 <h3>Some header</h3>
 <p>Some paragraph</p>
</div>

Enforced inheritance

Some properties are not automatically inherited from an element down to its' children. This is
because those properties are typically desired to be unique to the element (or selection of
elements) to which the property is applied to. Common such properties are margin, padding,
background, display, etc.

However, sometimes inheritance is desired anyway. To achieve this, we can apply the inherit
value to the property that should be inherited. The inherit value can be appied to any CSS
property and any HTML element.

Assume the following stylesheet:

#myContainer {
 color: red;

https://riptutorial.com/ 165

 padding: 5px;
}
#myContainer p {
 padding: inherit;
}

This will apply color: red to both the <h3> and <p> elements due to the inheritance nature of the
color property. However, the <p> element will also inherit the padding value from its' parent because
this was specified.

<div id="myContainer">
 <h3>Some header</h3>
 <p>Some paragraph</p>
</div>

Read Inheritance online: https://riptutorial.com/css/topic/3586/inheritance

https://riptutorial.com/ 166

https://riptutorial.com/css/topic/3586/inheritance

Chapter 30: Inline-Block Layout

Examples

Justified navigation bar

The horizontally justified navigation (menu) bar has some number of items that should be justified.
The first (left) item has no left margin within the container, the last (right) item has no right margin
within the container. The distance between items is equal, independent on the individual item
width.

HTML

<nav>

 abc
 abcdefghijkl
 abcdef

</nav>

CSS

nav {
 width: 100%;
 line-height: 1.4em;
}
ul {
 list-style: none;
 display: block;
 width: 100%;
 margin: 0;
 padding: 0;
 text-align: justify;
 margin-bottom: -1.4em;
}
ul:after {
 content: "";
 display: inline-block;
 width: 100%;
}
li {
 display: inline-block;
}

Notes

https://riptutorial.com/ 167

The nav, ul and li tags were chosen for their semantic meaning of 'a list of navigation
(menu) items'. Other tags may also be used of course.

•

The :after pseudo-element causes an extra 'line' in the ul and thus an extra, empty height of
this block, pushing other content down. This is solved by the negative margin-bottom, which
has to have the same magnitude as the line-height (but negative).

•

If the page becomes too narrow for all the items to fit, the items will break to a new line
(starting from the right) and be justified on this line. The total height of the menu will grow as
needed.

•

Read Inline-Block Layout online: https://riptutorial.com/css/topic/3308/inline-block-layout

https://riptutorial.com/ 168

https://riptutorial.com/css/topic/3308/inline-block-layout

Chapter 31: Internet Explorer Hacks

Remarks

These “hacks” may be used to target a specific browser/client. This may be used to work around
browser rendering differences by applying styles in one of those wrappers listed above.

Examples

High Contrast Mode in Internet Explorer 10 and greater

In Internet Explorer 10+ and Edge, Microsoft provides the -ms-high-contrast media selector to
expose the "High Contrast" setting from the browser, which allows the programmer to adjust their
site's styles accordingly.

The -ms-high-contrast selector has 3 states: active, black-on-white, and white-on-black. In IE10+ it
also had a none state, but that is no longer supported in Edge going forward.

Examples

@media screen and (-ms-high-contrast: active), (-ms-high-contrast: black-on-white) {
 .header{
 background: #fff;
 color: #000;
 }
}

This will change the header background to white and the text color to black when high contrast
mode is active and it is in black-on-white mode.

@media screen and (-ms-high-contrast: white-on-black) {
 .header{
 background: #000;
 color: #fff;
 }
}

Similar to the first example, but this specifically selects the white-on-black state only, and inverts
the header colors to a black background with white text.

More Information:

Microsoft Documentation on -ms-high-contrast

Internet Explorer 6 & Internet Explorer 7 only

https://riptutorial.com/ 169

https://msdn.microsoft.com/en-us/library/windows/apps/hh465764.aspx

To target Internet Explorer 6 and Internet Explorer 7, start your properties with *:

.hide-on-ie6-and-ie7 {
 *display : none; // This line is processed only on IE6 and IE7
}

Non-alphanumeric prefixes (other than hyphens and underscores) are ignored in IE6 and IE7, so
this hack works for any unprefixed property: value pair.

Internet Explorer 8 only

To target Internet Explorer 8, wrap your selectors inside @media \0 screen { }:

@media \0 screen {
 .hide-on-ie8 {
 display : none;
 }
}

Everything between @media \0 screen { } is processed only by I

Adding Inline Block support to IE6 and IE7

display: inline-block;

The display property with the value of inline-block is not supported by Internet Explorer 6 and 7. A
work-around for this is:

zoom: 1;
*display: inline;

The zoom property triggers the hasLayout feature of elements, and it is available only in Internet
Explorer. The *display makes sure that the invalid property executes only on the affected
browsers. Other browsers will simply ignore the rule.

Read Internet Explorer Hacks online: https://riptutorial.com/css/topic/5056/internet-explorer-hacks

https://riptutorial.com/ 170

https://riptutorial.com/css/topic/5056/internet-explorer-hacks

Chapter 32: Layout Control

Syntax

display: none | inline | block | list-item | inline-list-item | inline-block | inline-table | table |
table-cell | table-column | table-column-group | table-footer-group | table-header-group |
table-row | table-row-group | flex | inline-flex | grid | inline-grid | run-in | ruby | ruby-base |
ruby-text | ruby-base-container | ruby-text-container | contents;

•

Parameters

Value Effect

none Hide the element and prevent it from occupying space.

block Block element, occupy 100% of the available width, break after element.

inline Inline element, occupy no width, no break after element.

inline-
block

Taking special properties from both inline and block elements, no break, but can
have width.

inline-
flex Displays an element as an inline-level flex container.

inline-
table The element is displayed as an inline-level table.

grid
Behaves like a block element and lays out its content according to the grid
model.

flex
Behaves like a block element and lays out its content according to the flexbox
model.

inherit Inherit the value from the parent element.

initial
Reset the value to the default value taken from behaviors described in the HTML
specifications or from the browser/user default stylesheet.

table Behaves like the HTML table element.

table-
cell Let the element behave like a <td> element

table-
column Let the element behave like a <col> element

table-row Let the element behave like a <tr> element

list-item Let the element behave like a element.

https://riptutorial.com/ 171

Examples

The display property

The display CSS property is fundamental for controlling the layout and flow of an HTML document.
Most elements have a default display value of either block or inline (though some elements have
other default values).

Inline

An inline element occupies only as much width as necessary. It stacks horizontally with other
elements of the same type and may not contain other non-inline elements.

This is some bolded text!

As demonstrated above, two inline elements, and , are in-line (hence the name) and do
not break the flow of the text.

Block

A block element occupies the maximum available width of its' parent element. It starts with a new
line and, in contrast to inline elements, it does not restrict the type of elements it may contain.

<div>Hello world!</div><div>This is an example!</div>

The div element is block-level by default, and as shown above, the two block elements are
vertically stacked and, unlike the inline elements, the flow of the text breaks.

Inline Block

The inline-block value gives us the best of both worlds: it blends the element in with the flow of
the text while allowing us to use padding, margin, height and similar properties which have no visible
effect on inline elements.

Elements with this display value act as if they were regular text and as a result are affected by
rules controlling the flow of text such as text-align. By default they are also shrunk to the the
smallest size possible to accommodate their content.

https://riptutorial.com/ 172

https://i.stack.imgur.com/tv9k8.png
https://i.stack.imgur.com/MCTnB.png

<!--Inline: unordered list-->
<style>
li {
 display : inline;
 background : lightblue;
 padding:10px;

 border-width:2px;
 border-color:black;
 border-style:solid;
 }
</style>

First Element
Second Element
Third Element

<!--block: unordered list-->
<style>
li {
 display : block;
 background : lightblue;
 padding:10px;

 border-width:2px;
 border-color:black;
 border-style:solid;
 }
</style>

First Element
Second Element
Third Element

<!--Inline-block: unordered list-->
<style>
li {
 display : inline-block;
 background : lightblue;
 padding:10px;

https://riptutorial.com/ 173

https://i.stack.imgur.com/eTy8E.png
https://i.stack.imgur.com/fJErb.png

 border-width:2px;
 border-color:black;
 border-style:solid;
 }

</style>

First Element
Second Element
Third Element

none

An element that is given the none value to its display property will not be displayed at all.

For example let's create a div-element that has an id of myDiv:

<div id="myDiv"></div>

This can now be marked as not being displayed by the following CSS rule:

#myDiv {
 display: none;
}

When an element has been set to be display:none; the browser ignores every other layout
property for that specific element (both position and float). No box will be rendered for that
element and its existence in html does not affect the position of following elements.

Note that this is different from setting the visibility property to hidden. Setting visibility: hidden;
for an element would not display the element on the page but the element would still take up the
space in the rendering process as if it would be visible. This will therefore affect how following
elements are displayed on the page.

The none value for the display property is commonly used along with JavaScript to show or hide
elements at will, eliminating the need to actually delete and re-create them.

To get old table structure using div

This is the normal HTML table structure

<style>
 table {
 width: 100%;

https://riptutorial.com/ 174

https://i.stack.imgur.com/RNjHH.png

 }
</style>

<table>
 <tr>
 <td>
 I'm a table
 </td>
 </tr>
</table>

You can do same implementation like this

<style>
 .table-div {
 display: table;
 }
 .table-row-div {
 display: table-row;
 }
 .table-cell-div {
 display: table-cell;
 }
</style>

<div class="table-div>
 <div class="table-row-div>
 <div class="table-cell-div>
 I behave like a table now
 </div>
 </div>
</div>

Read Layout Control online: https://riptutorial.com/css/topic/1473/layout-control

https://riptutorial.com/ 175

https://riptutorial.com/css/topic/1473/layout-control

Chapter 33: Length Units

Introduction

A CSS distance measurement is a number immediately followed by a length unit (px, em, pc, in,
…)

CSS supports a number of length measurements units. They are absolute or relative.

Syntax

valueunit•
1em•

Parameters

Unit Description

% Define sizes in terms of parent objects or current object dependent on property

em
Relative to the font-size of the element (2em means 2 times the size of the current
font)

rem Relative to font-size of the root element

vw Relative to 1% of the width of the viewport*

vh Relative to 1% of the height of the viewport*

vmin Relative to 1% of viewport's* smaller dimension

vmax Relative to 1% of viewport's* larger dimension

cm centimeters

mm millimeters

in inches (1in = 96px = 2.54cm)

px pixels (1px = 1/96th of 1in)

pt points (1pt = 1/72 of 1in)

pc picas (1pc = 12 pt)

s seconds (used for animations and transitions)

https://riptutorial.com/ 176

Unit Description

ms milliseconds (used for animations and transitions)

ex Relative to the x-height of the current font

ch Based on the width of the zero (0) character

fr fractional unit (used for CSS Grid Layout)

Remarks

A whitespace cannot appear between the number and the unit. However, if the value is 0,
the unit can be omitted.

•

For some CSS properties, negative lengths are allowed.•

Examples

Font size with rem

CSS3 introduces a few new units, including the rem unit, which stands for "root em". Let's look at
how rem works.

First, let's look at the differences between em and rem.

em: Relative to the font size of the parent. This causes the compounding issue•
rem: Relative to the font size of the root or <html> element. This means it's possible to
declare a single font size for the html element and define all rem units to be a percentage of
that.

•

The main issue with using rem for font sizing is that the values are somewhat difficult to use. Here
is an example of some common font sizes expressed in rem units, assuming that the base size is
16px :

10px = 0.625rem•
12px = 0.75rem•
14px = 0.875rem•
16px = 1rem (base)•
18px = 1.125rem•
20px = 1.25rem•
24px = 1.5rem•
30px = 1.875rem•
32px = 2rem•

CODE:

3

https://riptutorial.com/ 177

https://www.w3.org/TR/css-values/#font-relative-lengths

html {
 font-size: 16px;
}

h1 {
 font-size: 2rem; /* 32px */
}

p {
 font-size: 1rem; /* 16px */
}

li {
 font-size: 1.5em; /* 24px */
}

Creating scalable elements using rems and ems

3

You can use rem defined by the font-size of your html tag to style elements by setting their font-
size to a value of rem and use em inside the element to create elements that scale with your global
font-size.

HTML:

<input type="button" value="Button">
<input type="range">
<input type="text" value="Text">

Relevant CSS:

html {
 font-size: 16px;
}

input[type="button"] {
 font-size: 1rem;
 padding: 0.5em 2em;
}

input[type="range"] {
 font-size: 1rem;
 width: 10em;
}

input[type=text] {
 font-size: 1rem;
 padding: 0.5em;
}

Possible Result:

https://riptutorial.com/ 178

vh and vw

CSS3 introduced two units for representing size.

vh, which stands for viewport height is relative to 1% of the viewport height•
vw, which stands for viewport width is relative to 1% of the viewport width•

3

div {
 width: 20vw;
 height: 20vh;
}

Above, the size for the div takes up 20% of the width and height of the viewport

vmin and vmax

vmin: Relative to 1 percent of the viewport's smaller dimension•
vmax: Relative to 1 percent of the viewport's larger dimension•

In other words, 1 vmin is equal to the smaller of 1 vh and 1 vw

1 vmax is equal to the larger of 1 vh and 1 vw

Note: vmax is not supported in:

any version of Internet Explorer•
Safari before version 6.1•

using percent %

One of the useful unit when creating a responsive application.

Its size depends on its parent container.

https://riptutorial.com/ 179

https://i.stack.imgur.com/Klztk.gif
http://caniuse.com/#feat=viewport-units

Equation:

(Parent Container`s width) * (Percentage(%)) = Output

For Example:

Parent has 100px width while the Child has 50%.

On the output, the Child's width will be half(50%) of the Parent's, which is 50px.

HTML

<div class="parent">
 PARENT
 <div class="child">
 CHILD
 </div>
</div>

CSS

<style>

*{
 color: #CCC;
}

.parent{
 background-color: blue;
 width: 100px;
}

.child{
 background-color: green;
 width: 50%;
}

</style>

OUTPUT

Read Length Units online: https://riptutorial.com/css/topic/864/length-units

https://riptutorial.com/ 180

http://i.stack.imgur.com/t6pPl.png
https://riptutorial.com/css/topic/864/length-units

Chapter 34: List Styles

Syntax

list-style: list-style-type | list-style-position | list-style-image | initial | inherit;•

Parameters

Value Description

list-style-type the type of list-item marker.

list-style-position specifies where to place the marker

list-style-image specifies the type of list-item marker

initial sets this property to its default value

inherit inherits this property from its parent element

Remarks

Although the list-style-type is actually a property that applies only to list items (normally), it
is often specified for the list tag (or). In this case, the list items inherit the property.

Examples

Type of Bullet or Numbering

Specific for tags within an unordered list ():

list-style: disc; /* A filled circle (default) */
list-style: circle; /* A hollow circle */
list-style: square; /* A filled square */
list-style: '-'; /* any string */

Specific for tags within an ordered list ():

list-style: decimal; /* Decimal numbers beginning with 1 (default) */
list-style: decimal-leading-zero;/* Decimal numbers padded by initial zeros (01, 02, 03, … 10)
*/
list-style: lower-roman; /* Lowercase roman numerals (i., ii., iii., iv., ...) */
list-style: upper-roman; /* Uppercase roman numerals (I., II., III., IV., ...) */
list-style-type: lower-greek; /* Lowercase roman letters (α., β., γ., δ., ...) */
list-style-type: lower-alpha; /* Lowercase letters (a., b., c., d., ...) */
list-style-type: lower-latin; /* Lowercase letters (a., b., c., d., ...) */

https://riptutorial.com/ 181

list-style-type: upper-alpha; /* Uppercase letters (A., B., C., D., ...) */
list-style-type: upper-latin; /* Uppercase letters (A., B., C., D., ...) */

Non-specific:

list-style: none; /* No visible list marker */
list-style: inherit; /* Inherits from parent */

Bullet Position

A list consists of elements inside a containing element (or). Both the list items and
the container can have margins and paddings which influence the exact position of the list item
content in the document. The default values for the margin and padding may be different for each
browser. In order to get the same layout cross-browser, these need to be set specifically.

Each list item gets a 'marker box', which contains the bullet marker. This box can either be placed
inside or outside of the list item box.

list-style-position: inside;

places the bullet within the element, pushing the content to the right as needed.

list-style-position: outside;

places the bullet left of the element. If there is not enough space in the padding of the
containing element, the marker box will extend to the left even if it would fall off the page.

Showing the result of inside and outside positioning: jsfiddle

Removing Bullets / Numbers

Sometimes, a list should just not display any bullet points or numbers. In that case, remember to
specify margin and padding.

 first item
 second item

CSS

ul {
 list-style-type: none;
}
li {
 margin: 0;
 padding: 0;
}

https://riptutorial.com/ 182

https://jsfiddle.net/pqh3cxdp/

Read List Styles online: https://riptutorial.com/css/topic/4215/list-styles

https://riptutorial.com/ 183

https://riptutorial.com/css/topic/4215/list-styles

Chapter 35: Margins

Syntax

margin: <top & right & bottom & left>;•
margin: <top>, <left & right>, <bottom>;•
margin: <top & bottom>, <left & right>;•
margin: <top>, <right>, <bottom>, <left>;•
margin-top: <top>;•
margin-right: <right>;•
margin-bottom: <bottom>;•
margin-left: <left>;•

Parameters

Parameter Details

0 set margin to none

auto used for centering, by evenly setting values on each side

units (e.g. px) see parameter section in Units for a list of valid units

inherit inherit margin value from parent element

initial restore to initial value

Remarks

More on "Collapsing Margins": here.

Examples

Apply Margin on a Given Side

Direction-Specific Properties

CSS allows you to specify a given side to apply margin to. The four properties provided for this
purpose are:

margin-left•
margin-right•
margin-top•

https://riptutorial.com/ 184

http://www.riptutorial.com/css/topic/864/length-units
https://www.sitepoint.com/web-foundations/collapsing-margins/

margin-bottom•

The following code would apply a margin of 30 pixels to the left side of the selected div. View
Result

HTML

<div id="myDiv"></div>

CSS

#myDiv {
 margin-left: 30px;
 height: 40px;
 width: 40px;
 background-color: red;
}

Parameter Details

margin-left The direction in which the margin should be applied.

30px The width of the margin.

Specifying Direction Using Shorthand
Property

The standard margin property can be expanded to specify differing widths to each side of the
selected elements. The syntax for doing this is as follows:

margin: <top> <right> <bottom> <left>;

The following example applies a zero-width margin to the top of the div, a 10px margin to the right
side, a 50px margin to the left side, and a 100px margin to the left side. View Result

HTML

<div id="myDiv"></div>

CSS

#myDiv {
 margin: 0 10px 50px 100px;
 height: 40px;
 width: 40px;
 background-color: red;
}

https://riptutorial.com/ 185

https://jsfiddle.net/wm0100x9/1/
https://jsfiddle.net/wm0100x9/1/
https://jsfiddle.net/1979c947/

Margin Collapsing

When two margins are touching each other vertically, they are collapsed. When two margins touch
horizontally, they do not collapse.

Example of adjacent vertical margins:

Consider the following styles and markup:

div{
 margin: 10px;
}

<div>
 some content
</div>
<div>
 some more content
</div>

They will be 10px apart since vertical margins collapse over one and other. (The spacing will not
be the sum of two margins.)

Example of adjacent horizontal margins:

Consider the following styles and markup:

span{
 margin: 10px;
}

somecontent

They will be 20px apart since horizontal margins don't collapse over one and other. (The spacing
will be the sum of two margins.)

Overlapping with different sizes

.top{
 margin: 10px;
}
.bottom{
 margin: 15px;
}

<div class="top">
 some content
</div>
<div class="bottom">
 some more content
</div>

https://riptutorial.com/ 186

These elements will be spaced 15px apart vertically. The margins overlap as much as they can,
but the larger margin will determine the spacing between the elements.

Overlapping margin gotcha

.outer-top{
 margin: 10px;
}
.inner-top{
 margin: 15px;
}
.outer-bottom{
 margin: 20px;
}
.inner-bottom{
 margin: 25px;
}

<div class="outer-top">
 <div class="inner-top">
 some content
 </div>
</div>
<div class="outer-bottom">
 <div class="inner-bottom">
 some more content
 </div>
</div>

What will be the spacing between the two texts? (hover to see answer)

The spacing will be 25px. Since all four margins are touching each other, they will
collapse, thus using the largest margin of the four.

Now, what about if we add some borders to the markup above.

div{
 border: 1px solid red;
}

What will be the spacing between the two texts? (hover to see answer)

The spacing will be 59px! Now only the margins of .outer-top and .outer-bottom touch
each other, and are the only collapsed margins. The remaining margins are separated
by the borders. So we have 1px + 10px + 1px + 15px + 20px + 1px + 25px + 1px. (The
1px's are the borders...)

Collapsing Margins Between Parent and Child Elements:

HTML:

<h1>Title</h1>
<div>
 <p>Paragraph</p>

https://riptutorial.com/ 187

</div>

CSS

h1 {
 margin: 0;
 background: #cff;
}
div {
 margin: 50px 0 0 0;
 background: #cfc;
}
p {
 margin: 25px 0 0 0;
 background: #cf9;
}

In the example above, only the largest margin applies. You may have expected that the paragraph
would be located 60px from the h1 (since the div element has a margin-top of 40px and the p has
a 20px margin-top). This does not happen because the margins collapse together to form one
margin.

Horizontally center elements on a page using margin

As long as the element is a block, and it has an explicitly set width value, margins can be used
to center block elements on a page horizontally.

We add a width value that is lower than the width of the window and the auto property of margin
then distributes the remaining space to the left and the right:

#myDiv {
 width:80%;
 margin:0 auto;
}

In the example above we use the shorthand margin declaration to first set 0 to the top and bottom
margin values (although this could be any value) and then we use auto to let the browser allocate
the space automatically to the left and right margin values.

In the example above, the #myDiv element is set to 80% width which leaves use 20% leftover. The
browser distributes this value to the remaining sides so:

(100% - 80%) / 2 = 10%

Margin property simplification

p {
 margin:1px; /* 1px margin in all directions */

 /*equals to:*/

 margin:1px 1px;

https://riptutorial.com/ 188

 /*equals to:*/

 margin:1px 1px 1px;

 /*equals to:*/

 margin:1px 1px 1px 1px;
}

Another exapmle:

p{
 margin:10px 15px; /* 10px margin-top & bottom And 15px margin-right & left*/

 /*equals to:*/

 margin:10px 15px 10px 15px;

 /*equals to:*/

 margin:10px 15px 10px;
 /* margin left will be calculated from the margin right value (=15px) */
}

Negative margins

Margin is one of a few CSS properties that can be set to negative values. This property can be
used to overlap elements without absolute positioning.

div{
 display: inline;
}

#over{
 margin-left: -20px;
}

<div>Base div</div>
<div id="over">Overlapping div</div>

Example 1:

It is obvious to assume that the percentage value of margin to margin-left and margin-right would
be relative to its parent element.

.parent {
 width : 500px;
 height: 300px;
}

.child {
 width : 100px;
 height: 100px;
 margin-left: 10%; /* (parentWidth * 10/100) => 50px */

https://riptutorial.com/ 189

}

But that is not the case, when comes to margin-top and margin-bottom. Both these properties, in
percentages, aren't relative to the height of the parent container but to the width of the parent
container.

So,

.parent {
 width : 500px;
 height: 300px;
}

.child {
 width : 100px;
 height: 100px;
 margin-left: 10%; /* (parentWidth * 10/100) => 50px */
 margin-top: 20%; /* (parentWidth * 20/100) => 100px */
}

Read Margins online: https://riptutorial.com/css/topic/305/margins

https://riptutorial.com/ 190

https://riptutorial.com/css/topic/305/margins

Chapter 36: Media Queries

Syntax

@media [not|only] mediatype and (media feature) { /* CSS rules to apply */ }•

Parameters

Parameter Details

mediatype
(Optional) This is the type of media. Could be anything in the range of all
to screen.

not
(Optional) Doesn't apply the CSS for this particular media type and applies
for everything else.

media feature Logic to identify use case for CSS. Options outlined below.

Media Feature Details

aspect-ratio Describes the aspect ratio of the targeted display area of the output device.

color
Indicates the number of bits per color component of the output device. If
the device is not a color device, this value is zero.

color-index
Indicates the number of entries in the color look-up table for the output
device.

grid Determines whether the output device is a grid device or a bitmap device.

height
The height media feature describes the height of the output device's
rendering surface.

max-width CSS will not apply on a screen width wider than specified.

min-width CSS will not apply on a screen width narrower than specified.

max-height CSS will not apply on a screen height taller than specified.

min-height CSS will not apply on a screen height shorter than specified.

monochrome
Indicates the number of bits per pixel on a monochrome (greyscale)
device.

orientation
CSS will only display if device is using specified orientation. See remarks
for more details.

https://riptutorial.com/ 191

Parameter Details

resolution Indicates the resolution (pixel density) of the output device.

scan Describes the scanning process of television output devices.

width
The width media feature describes the width of the rendering surface of the
output device (such as the width of the document window, or the width of
the page box on a printer).

Deprecated
Features

Details

device-aspect-
ratio

Deprecated CSS will only display on devices whose height/width ratio
matches the specified ratio. This is adeprecatedfeature and is not
guaranteed to work.

max-device-
width

Deprecated Same as max-width but measures the physical screen width,
rather than the display width of the browser.

min-device-
width

Deprecated Same as min-width but measures the physical screen width,
rather than the display width of the browser.

max-device-
height

Deprecated Same as max-height but measures the physical screen width,
rather than the display width of the browser.

min-device-
height

Deprecated Same as min-height but measures the physical screen width,
rather than the display width of the browser.

Remarks

Media queries are supported in all modern browsers, including Chrome, Firefox, Opera, and
Internet Explorer 9 and up.

It is important to note that the orientation media feature is not limited to mobile devices. It is based
on the width and height of the viewport (not window or devices).

Landscape Mode is when the viewport width is larger than viewport height.

Portrait Mode is when the viewport height is larger than viewport width.

This usually translates to a desktop monitor being in landscape mode, but can it sometimes be
portrait.

In most cases mobile devices will report their resolution and not their real pixel size which can
differ due to pixel density. To force them to report their real pixel size add the following inside your
head tag:

https://riptutorial.com/ 192

<meta name="viewport" content="width=device-width, initial-scale=1">

Examples

Basic Example

@media screen and (min-width: 720px) {
 body {
 background-color: skyblue;
 }
}

The above media query specifies two conditions:

The page must be viewed on a normal screen (not a printed page, projector, etc).1.
The width of the user's view port must be at least 720 pixels.2.

If these conditions are met, the styles inside the media query will be active, and the background
color of the page will be sky blue.

Media queries are applied dynamically. If on page load the conditions specified in the media query
are met, the CSS will be applied, but will be immediately disabled should the conditions cease to
be met. Conversely, if the conditions are initially not met, the CSS will not be applied until the
specified conditions are met.

In our example, if the user's view port width is initially greater than 720 pixels, but the user shrinks
the browser's width, the background color will cease to be sky blue as soon as the user has
resized the view port to less than 720 pixels in width.

Use on link tag

<link rel="stylesheet" media="min-width: 600px" href="example.css" />

This stylesheet is still downloaded but is applied only on devices with screen width larger than
600px.

mediatype

Media queries have an optional mediatype parameter. This parameter is placed directly after the
@media declaration (@media mediatype), for example:

@media print {
 html {
 background-color: white;
 }
}

The above CSS code will give the DOM HTML element a white background color when being

https://riptutorial.com/ 193

printed.

The mediatype parameter has an optional not or only prefix that will apply the styles to everything
except the specified mediatype or only the specified media type, respectively. For example, the
following code example will apply the style to every media type except print.

@media not print {
 html {
 background-color: green;
 }
}

And the same way, for just showing it only on the screen, this can be used:

@media only screen {
 .fadeInEffects {
 display: block;
 }
}

The list of mediatype can be understood better with the following table:

Media Type Description

all Apply to all devices

screen Default computers

print Printers in general. Used to style print-versions of websites

handheld PDA's, cellphones and hand-held devices with a small screen

projection For projected presentation, for example projectors

aural Speech Systems

braille Braille tactile devices

embossed Paged braille printers

tv Television-type devices

tty Devices with a fixed-pitch character grid. Terminals, portables.

Using Media Queries to Target Different Screen Sizes

Often times, responsive web design involves media queries, which are CSS blocks that are only
executed if a condition is satisfied. This is useful for responsive web design because you can use
media queries to specify different CSS styles for the mobile version of your website versus the
desktop version.

https://riptutorial.com/ 194

@media only screen and (min-width: 300px) and (max-width: 767px) {
 .site-title {
 font-size: 80%;
 }

 /* Styles in this block are only applied if the screen size is atleast 300px wide, but no
more than 767px */
}

@media only screen and (min-width: 768px) and (max-width: 1023px) {
 .site-title {
 font-size: 90%;
 }

 /* Styles in this block are only applied if the screen size is atleast 768px wide, but no
more than 1023px */
}

@media only screen and (min-width: 1024px) {
 .site-title {
 font-size: 120%;
 }

 /* Styles in this block are only applied if the screen size is over 1024px wide. */
}

Width vs Viewport

When we are using "width" with media queries it is important to set the meta tag correctly. Basic
meta tag looks like this and it needs to be put inside the <head> tag.

<meta name="viewport" content="width=device-width,initial-scale=1">

Why this is important?

Based on MDN's definition "width" is

The width media feature describes the width of the rendering surface of the output
device (such as the width of the document window, or the width of the page box on a
printer).

What does that mean?

View-port is the width of the device itself. If your screen resolution says the resolution is 1280 x
720, your view-port width is "1280px".

More often many devices allocate different pixel amount to display one pixel. For an example
iPhone 6 Plus has 1242 x 2208 resolution. But the actual viewport-width and viewport-height is
414 x 736. That means 3 pixels are used to create 1 pixel.

But if you did not set the meta tag correctly it will try to show your webpage with its native resolution
which results in a zoomed out view (smaller texts and images).

https://riptutorial.com/ 195

Media Queries for Retina and Non Retina Screens

Although this works only for WebKit based browsers, this is helpful:

/* ----------- Non-Retina Screens ----------- */
@media screen
 and (min-width: 1200px)
 and (max-width: 1600px)
 and (-webkit-min-device-pixel-ratio: 1) {
}

/* ----------- Retina Screens ----------- */
@media screen
 and (min-width: 1200px)
 and (max-width: 1600px)
 and (-webkit-min-device-pixel-ratio: 2)
 and (min-resolution: 192dpi) {
}

Background Information

There are two types of pixels in the display. One is the logical pixels and the other is the physical
pixels. Mostly, the physical pixels always stay the same, because it is the same for all the display
devices. The logical pixels change based on the resolution of the devices to display higher quality
pixels. The device pixel ratio is the ratio between physical pixels and logical pixels. For instance,
the MacBook Pro Retina, iPhone 4 and above report a device pixel ratio of 2, because the physical
linear resolution is double the logical resolution.

The reason why this works only with WebKit based browsers is because of:

The vendor prefix -webkit- before the rule.•
This hasn't been implemented in engines other than WebKit and Blink.•

Terminology and Structure

Media queries allow one to apply CSS rules based on the type of device / media (e.g. screen,
print or handheld) called media type, additional aspects of the device are described with media
features such as the availability of color or viewport dimensions.

General Structure of a Media Query

@media [...] {
 /* One or more CSS rules to apply when the query is satisfied */
}

A Media Query containing a Media Type

@media print {

https://riptutorial.com/ 196

 /* One or more CSS rules to apply when the query is satisfied */
}

A Media Query containing a Media Type and a
Media Feature

@media screen and (max-width: 600px) {
 /* One or more CSS rules to apply when the query is satisfied */
}

A Media Query containing a Media Feature
(and an implicit Media Type of "all")

@media (orientation: portrait) {
 /* One or more CSS rules to apply when the query is satisfied */
}

Media queries and IE8

Media queries are not supported at all in IE8 and below.

A Javascript based workaround

To add support for IE8, you could use one of several JS solutions. For example, Respond can be
added to add media query support for IE8 only with the following code :

<!--[if lt IE 9]>
<script
 src="respond.min.js">
</script>
<![endif]-->

CSS Mediaqueries is another library that does the same thing. The code for adding that library to
your HTML would be identical :

<!--[if lt IE 9]>
<script
 src="css3-mediaqueries.js">
</script>
<![endif]-->

https://riptutorial.com/ 197

http://www.brianhadaway.com/responsive-web-design-using-css3-media-queries/
https://github.com/scottjehl/Respond
https://code.google.com/p/css3-mediaqueries-js/

The alternative

If you don't like a JS based solution, you should also consider adding an IE<9 only stylesheet
where you adjust your styling specific to IE<9. For that, you should add the following HTML to your
code:

<!--[if lt IE 9]>
<link rel="stylesheet" type="text/css" media="all" href="style-ielt9.css"/>
<![endif]-->

Note :

Technically it's one more alternative: using CSS hacks to target IE<9. It has the same impact as
an IE<9 only stylesheet, but you don't need a seperate stylesheet for that. I do not recommend this
option, though, as they produce invalid CSS code (which is but one of several reasons why the
use of CSS hacks is generally frowned upon today).

Read Media Queries online: https://riptutorial.com/css/topic/317/media-queries

https://riptutorial.com/ 198

http://browserhacks.com/
https://riptutorial.com/css/topic/317/media-queries

Chapter 37: Multiple columns

Introduction

CSS allows to define that element contents wrap into multiple columns with gaps and rules
between them.

Remarks

CSS Multi-column Layout Module Level 1 is, as of 12 April 2011, a W3C Candidate
Recommendation. Since then, a few smaller changes were made. It is considered to be in the
Stable stage.

As of 3 July 2017, Microsoft's Internet Explorer 10 and 11 and Edge browsers only support an
older version of the specification using a vendor prefix.

Examples

Basic example

Consider the following HTML markup:

<section>
 <p>Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor
invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et
justo duo dolores et ea rebum.</p>
 <p> Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem
ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut
labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo
dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor
sit amet.</p>
 <p>Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor
invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et
justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem
ipsum dolor sit amet.</p>
</section>

With the following CSS applied the content is split into three columns separated by a gray column
rule of two pixels.

section {
 columns: 3;
 column-gap: 40px;
 column-rule: 2px solid gray;
}

See a live sample of this on JSFiddle.

https://riptutorial.com/ 199

https://www.w3.org/TR/css3-multicol/
https://drafts.csswg.org/css-multicol-1/#changes
https://www.w3.org/Style/CSS/current-work
https://jsfiddle.net/vjL9ewmb/

Create Multiple Columns

<div class="content">
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh
euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim
ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl
ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in
hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu
feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui
blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla
facilisi. Nam liber tempor cum soluta nobis eleifend option congue nihil
imperdiet doming id quod mazim placerat facer possim assum.
</div>

Css

.content {
-webkit-column-count: 3; /* Chrome, Safari, Opera */
-moz-column-count: 3; /* Firefox */
column-count: 3;
}

Read Multiple columns online: https://riptutorial.com/css/topic/10688/multiple-columns

https://riptutorial.com/ 200

https://riptutorial.com/css/topic/10688/multiple-columns

Chapter 38: Normalizing Browser Styles

Introduction

Every browser has a default set of CSS styles that it uses for rendering elements. These default
styles may not be consistent across browsers because: the language specifications are unclear so
base styles are up for interpretation, browsers may not follow specifications that are given, or
browsers may not have default styles for newer HTML elements. As a result, people may want to
normalize default styles across as many browsers as possible.

Remarks

Meyer's Reset, while effective, makes the same changes to nearly every commonly used element.
This has the result of polluting web browser inspector windows with the same applied styles over
and over again, and creates more work for the browser (more rules to apply to more elements).
The Normalize technique, on the other hand, is much more focused and less of a broad-brush
technique. This simplifies the work on the part of the browser, and results in less clutter in the
browser inspection tools.

Examples

normalize.css

Browsers have a default set of CSS styles they use for rendering elements. Some of these styles
can even be customised using the browser's settings to change default font face and size
definitions, for example. The styles contain the definition of which elements are supposed to be
block-level or inline, among other things.

Because these default styles are given some leeway by the language specifications and because
browsers may not follow the specs properly they can differ from browser to browser.

This is where normalize.css comes into play. It overrides the most common inconsistencies and
fixes known bugs.

What does it do

Preserves useful defaults, unlike many CSS resets.•
Normalizes styles for a wide range of elements.•
Corrects bugs and common browser inconsistencies.•
Improves usability with subtle modifications.•
Explains what code does using detailed comments.•

So, by including normalize.css in your project your design will look more alike and consistent
across different browsers.

https://riptutorial.com/ 201

http://necolas.github.io/normalize.css/

Difference to reset.css

You may have heard of reset.css. What's the difference between the two?

While normalize.css provides consistency by setting different properties to unified defaults,
reset.css achieves consistency by removing all basic styling that a browser may apply. While this
might sound like a good idea at first, this actually means you have to write all rules yourself, which
goes against having a solid standard.

Approaches and Examples

CSS resets take separate approaches to browser defaults. Eric Meyer’s Reset CSS has been
around for a while. His approach nullifies many of the browser elements that have been known to
cause problems right off the back. The following is from his version (v2.0 | 20110126) CSS Reset.

html, body, div, span, applet, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, img, ins, kbd, q, s, samp,
small, strike, strong, sub, sup, tt, var,
b, u, i, center,
dl, dt, dd, ol, ul, li,
fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td,
article, aside, canvas, details, embed,
figure, figcaption, footer, header, hgroup,
menu, nav, output, ruby, section, summary,
time, mark, audio, video {
 margin: 0;
 padding: 0;
 border: 0;
 font-size: 100%;
 font: inherit;
 vertical-align: baseline;
}

Eric Meyer's Reset CSS

Normalize CSS on the other and deals with many of these separately. The following is a sample
from the version (v4.2.0) of the code.

/**
 * 1. Change the default font family in all browsers (opinionated).
 * 2. Correct the line height in all browsers.
 * 3. Prevent adjustments of font size after orientation changes in IE and iOS.
 */

/* Document
 == */

html {
 font-family: sans-serif; /* 1 */
 line-height: 1.15; /* 2 */
 -ms-text-size-adjust: 100%; /* 3 */

https://riptutorial.com/ 202

http://meyerweb.com/eric/tools/css/reset/

 -webkit-text-size-adjust: 100%; /* 3 */
}

/* Sections
 == */

/**
 * Remove the margin in all browsers (opinionated).
 */

body {
 margin: 0;
}

/**
 * Add the correct display in IE 9-.
 */

article,
aside,
footer,
header,
nav,
section {
 display: block;
}

/**
 * Correct the font size and margin on `h1` elements within `section` and
 * `article` contexts in Chrome, Firefox, and Safari.
 */

h1 {
 font-size: 2em;
 margin: 0.67em 0;
}

Normalize CSS

Read Normalizing Browser Styles online: https://riptutorial.com/css/topic/1211/normalizing-
browser-styles

https://riptutorial.com/ 203

http://normalize.css
https://riptutorial.com/css/topic/1211/normalizing-browser-styles
https://riptutorial.com/css/topic/1211/normalizing-browser-styles

Chapter 39: Object Fit and Placement

Remarks

The properties object-fit and object-position are not supported by Internet Explorer.

Examples

object-fit

The object-fit property will defines how an element will fit into a box with an established height
and width. Usually applied to an image or video, Object-fit accepts the following five values:

FILL

object-fit:fill;

Fill stretches the image to fit the content box without regard to the image's original aspect ratio.

CONTAIN

object-fit:contain;

https://riptutorial.com/ 204

https://i.stack.imgur.com/xIdvn.png

Contain fits the image in the box's height or width while maintaining the image's aspect ratio.

COVER

object-fit:cover;

Cover fills the entire box with the image. The image aspect ratio is preserved, but the image is
cropped to the dimensions of the box.

NONE

object-fit:none;

https://riptutorial.com/ 205

https://i.stack.imgur.com/qpiUd.png
https://i.stack.imgur.com/zxl94.png

None ignores the size of the box and is not resized.

SCALE-DOWN

object-fit:scale-down;

Scale-down either sizes the object as none or as contain. It displays whichever option results in a
smaller image size.

Read Object Fit and Placement online: https://riptutorial.com/css/topic/5520/object-fit-and-
placement

https://riptutorial.com/ 206

https://i.stack.imgur.com/YdXVL.png
https://i.stack.imgur.com/bnDKA.png
https://riptutorial.com/css/topic/5520/object-fit-and-placement
https://riptutorial.com/css/topic/5520/object-fit-and-placement

Chapter 40: Opacity

Syntax

opacity: number (* strictly between 0 and 1) | inherit | initial | unset;•

Remarks

If you do not want apply opacity, you can use this instead:

background: rgba(255, 255, 255, 0.6);

Resources:

MDN: https://developer.mozilla.org/en/docs/Web/CSS/opacity;•
W3C Transparency: the ‘opacity’ property: https://www.w3.org/TR/css3-color/#transparency•
Browser support: http://caniuse.com/#feat=css-opacity•

Examples

Opacity Property

An element's opacity can be set using the opacity property. Values can be anywhere from 0.0
(transparent) to 1.0 (opaque).

Example Usage

<div style="opacity:0.8;">
 This is a partially transparent element
</div>

Property Value Transparency

opacity: 1.0; Opaque

opacity: 0.75; 25% transparent (75% Opaque)

opacity: 0.5; 50% transparent (50% Opaque)

opacity: 0.25; 75% transparent (25% Opaque)

opacity: 0.0; Transparent

IE Compatibility for `opacity`

To use opacity in all versions of IE, the order is:

https://riptutorial.com/ 207

http://www.riptutorial.com/css/example/7137/background-color-with-opacity
https://developer.mozilla.org/en/docs/Web/CSS/opacity
https://www.w3.org/TR/css3-color/#transparency
http://caniuse.com/#feat=css-opacity

.transparent-element {
 /* for IE 8 & 9 */
 -ms-filter:"progid:DXImageTransform.Microsoft.Alpha(Opacity=60)"; // IE8
 /* works in IE 8 & 9 too, but also 5, 6, 7 */
 filter: alpha(opacity=60); // IE 5-7
 /* Modern Browsers */
 opacity: 0.6;
}

Read Opacity online: https://riptutorial.com/css/topic/2864/opacity

https://riptutorial.com/ 208

https://riptutorial.com/css/topic/2864/opacity

Chapter 41: Outlines

Syntax

outline: outline-color outline-style outline-width | initial | inherit;•
outline-width: medium | thin | thick | length | initial | inherit;•
outline-style: none | hidden | dotted | dashed | solid | double | groove | ridge | inset | outset |
initial | inherit;

•

Parameters

Parameter Details

dotted dotted outline

dashed dashed outline

solid solid outline

double double outline

groove 3D grooved outline, depends on the outline-color value

ridge 3D ridged outline, depends on the outline-color value

inset 3D inset outline, depends on the outline-color value

outset 3D outset outline, depends on the outline-color value

none no outline

hidden hidden outline

Remarks

outline is now described in Basic UI, a CSS Module Level 3 (it was already described in REC
CSS2.1)

Outline property is defined by default in browsers for focusable elements in :focus state.
It shouldn't be removed, see http://outlinenone.com which states:

What does the outline property do?

It provides visual feedback for links that have "focus" when navigating a web document
using the TAB key (or equivalent). This is especially useful for folks who can't use a

https://riptutorial.com/ 209

https://www.w3.org/TR/css-ui-3/#outline-props
http://outlinenone.com

mouse or have a visual impairment. If you remove the outline you are making your site
inaccessible for these people. (…)

Interesting related examples on Stack Overflow:

How to remove the border highlight on an input text element•
How to remove Firefox's dotted outline on BUTTONS as well as links?•

Examples

Overview

Outline is a line that goes around the element, outside of the border. In contrast to border, outlines
do not take any space in the box model. So adding an outline to an element does not affect the
position of the element or other elements.

In addition, outlines can be non-rectangular in some browsers. This can happen if outline is
applied on a span element that has text with different font-size properties inside it. Unlike borders,
outlines cannot have rounded corners.

The essential parts of outline are outline-color, outline-style and outline-width.

The definition of an outline is equivalent to the definition of a border:

An outline is a line around an element. It is displayed around the margin of the
element. However, it is different from the border property.

outline: 1px solid black;

outline-style

The outline-style property is used to set the style of the outline of an element.

p {
 border: 1px solid black;
 outline-color:blue;
 line-height:30px;
}
.p1{
 outline-style: dotted;
}
.p2{
 outline-style: dashed;
}
.p3{
 outline-style: solid;
}
.p4{
 outline-style: double;
}
.p5{
 outline-style: groove;

https://riptutorial.com/ 210

http://stackoverflow.com/questions/1457849/how-to-remove-the-border-highlight-on-an-input-text-element?rq=1
http://stackoverflow.com/questions/71074/how-to-remove-firefoxs-dotted-outline-on-buttons-as-well-as-links?rq=1

}
.p6{
 outline-style: ridge;
}
.p7{
 outline-style: inset;
}
.p8{
 outline-style: outset;
}

HTML

<p class="p1">A dotted outline</p>
<p class="p2">A dashed outline</p>
<p class="p3">A solid outline</p>
<p class="p4">A double outline</p>
<p class="p5">A groove outline</p>
<p class="p6">A ridge outline</p>
<p class="p7">An inset outline</p>
<p class="p8">An outset outline</p>

Read Outlines online: https://riptutorial.com/css/topic/4258/outlines

https://riptutorial.com/ 211

https://i.stack.imgur.com/KHAoO.png
https://riptutorial.com/css/topic/4258/outlines

Chapter 42: Overflow

Syntax

overflow: visible | hidden | scroll | auto | initial | inherit;•

Parameters

Overflow
Value

Details

visible Shows all overflowing content outside the element

scroll Hides the overflowing content and adds a scroll bar

hidden
Hides the overflowing content, both scroll bars disappear and the page
becomes fixed

auto Same as scroll if content overflows, but doesn't add scroll bar if content fits

inherit Inherit's the parent element's value for this property

Remarks

The overflow property specifies whether to clip content, render scrollbars, or stretch a
container to display content when it overflows its block level container.

When an element is too small to display it's contents, what happens? By default, the content will
just overflow and display outside the element. That makes your work look bad. You want your
work to look good, so you set the overflow property to handle the overflowing content in a
desirable way.

Values for the overflow property are identical to those for the overflow-x and overflow-y properties,
exept that they apply along each axis

The overflow-wrap property has also been known as the word-wrap property.

Important note: Using the overflow property with a value different to visible will create a
new block formatting context.

Examples

overflow: scroll

https://riptutorial.com/ 212

https://developer.mozilla.org/en/docs/Web/CSS/overflow
https://developer.mozilla.org/en/docs/Web/CSS/overflow
https://developer.mozilla.org/en/docs/Web/CSS/overflow
https://developer.mozilla.org/en/docs/Web/CSS/overflow
https://developer.mozilla.org/en/docs/Web/CSS/overflow
https://developer.mozilla.org/en/docs/Web/CSS/overflow

HTML

<div>
 This div is too small to display its contents to display the effects of the overflow
property.
</div>

CSS

div {
 width:100px;
 height:100px;
 overflow:scroll;
}

Result

The content above is clipped in a 100px by 100px box, with scrolling available to view overflowing
content.

Most desktop browsers will display both horizontal and vertical scrollbars, whether or not any
content is clipped. This can avoid problems with scrollbars appearing and disappearing in a
dynamic environment. Printers may print overflowing content.

overflow-wrap

overflow-wrap tells a browser that it can break a line of text inside a targeted element onto multiple
lines in an otherwise unbreakable place. Helpful in preventing an long string of text causing layout
problems due to overflowing it's container.

CSS

div {
 width:100px;
 outline: 1px dashed #bbb;
}

#div1 {
 overflow-wrap:normal;
}

#div2 {
 overflow-wrap:break-word;
}

https://riptutorial.com/ 213

http://i.stack.imgur.com/krWW2.png

HTML

<div id="div1">
 #div1: Small words are displayed normally, but a long word like <span
style="red;">supercalifragilisticexpialidocious is too long so it will overflow past
the edge of the line-break
</div>

<div id="div2">
 #div2: Small words are displayed normally, but a long word like <span
style="red;">supercalifragilisticexpialidocious will be split at the line break and
continue on the next line.
</div>

overflow-wrap – Value Details

normal Lets a word overflow if it is longer than the line

break-word Will split a word into multiple lines, if necessary

inherit Inherits the parent element's value for this property

overflow: visible

HTML

https://riptutorial.com/ 214

https://i.stack.imgur.com/VRNhr.png

<div>
 Even if this div is too small to display its contents, the content is not clipped.
</div>

CSS

div {
 width:50px;
 height:50px;
 overflow:visible;
}

Result

Content is not clipped and will be rendered outside the content box if it exceeds its container size.

Block Formatting Context Created with Overflow

Using the overflow property with a value different to visible will create a new block formatting
context. This is useful for aligning a block element next to a floated element.

CSS

img {
 float:left;
 margin-right: 10px;
}
 div {
 overflow:hidden; /* creates block formatting context */
}

HTML

<div>
 <p>Lorem ipsum dolor sit amet, cum no paulo mollis pertinacia.</p>
 <p>Ad case omnis nam, mutat deseruisse persequeris eos ad, in tollit debitis sea.</p>
</div>

https://riptutorial.com/ 215

https://i.stack.imgur.com/HLZHC.png

Result

This example shows how paragraphs within a div with the overflow property set will interact with a
floated image.

overflow-x and overflow-y

These two properties work in a similar fashion as the overflow property and accept the same
values. The overflow-x parameter works only on the x or left-to-right axis. The overflow-y works on
the y or top-to-bottom axis.

HTML

<div id="div-x">
 If this div is too small to display its contents,
 the content to the left and right will be clipped.
</div>

<div id="div-y">
 If this div is too small to display its contents,
 the content to the top and bottom will be clipped.
</div>

CSS

div {
 width: 200px;
 height: 200px;
}

#div-x {
 overflow-x: hidden;
}

https://riptutorial.com/ 216

http://i.stack.imgur.com/s0Pch.png

#div-y {
 overflow-y: hidden;
}

Read Overflow online: https://riptutorial.com/css/topic/4947/overflow

https://riptutorial.com/ 217

https://riptutorial.com/css/topic/4947/overflow

Chapter 43: Padding

Syntax

padding: length|initial|inherit|unset;•
padding-top: length|initial|inherit|unset;•
padding-right: length|initial|inherit|unset;•
padding-bottom: length|initial|inherit|unset;•
padding-left: length|initial|inherit|unset;•

Remarks

The padding property sets the padding space on all sides of an element. The padding
area is the space between the content of the element and its border. Negative values
are not allowed.

1: https://developer.mozilla.org/en/docs/Web/CSS/padding MDN

Also see this question, "Why does CSS not support negative padding?" and his answers.

Also please consider The Box Model when using padding. Depending on the box-sizing value,
padding on an element can either add to the previously defined height/width of an element or not.

Related Properties:

margin

Padding on inline elements will only apply to the left and right of the element, and not the top and
bottom, due to the inherent display properties of inline elements.

Examples

Padding on a given side

The padding property sets the padding space on all sides of an element. The padding area is the
space between the content of the element and its border. Negative values are not allowed.

You can specify a side individually:

padding-top•
padding-right•
padding-bottom•
padding-left•

The following code would add a padding of 5px to the top of the div:

<style>

https://riptutorial.com/ 218

http://stackoverflow.com/questions/4973988/why-does-css-not-support-negative-padding
http://stackoverflow.com/questions/4973988/why-does-css-not-support-negative-padding
http://stackoverflow.com/questions/4973988/why-does-css-not-support-negative-padding
http://stackoverflow.com/questions/4973988/why-does-css-not-support-negative-padding
http://stackoverflow.com/questions/4973988/why-does-css-not-support-negative-padding
http://stackoverflow.com/questions/4973988/why-does-css-not-support-negative-padding
https://developer.mozilla.org/en/docs/Web/CSS/padding
http://stackoverflow.com/questions/4973988/why-does-css-not-support-negative-padding
http://stackoverflow.com/questions/4973988/why-does-css-not-support-negative-padding
http://www.riptutorial.com/css/topic/646/the-box-model
http://www.riptutorial.com/css/topic/305/margins

.myClass {
 padding-top: 5px;
}
</style>

<div class="myClass"></div>

Padding Shorthand

The padding property sets the padding space on all sides of an element. The padding area is the
space between the content of the element and its border. Negative values are not allowed.

To save adding padding to each side individually (using padding-top, padding-left etc) can you
write it as a shorthand, as below:

Four values:

<style>
 .myDiv {
 padding: 25px 50px 75px 100px; /* top right bottom left; */
 }
</style>
<div class="myDiv"></div>

Three values:

<style>
 .myDiv {
 padding: 25px 50px 75px; /* top left/right bottom */
 }
</style>
<div class="myDiv"></div>

Two values:

<style>
 .myDiv {
 padding: 25px 50px; /* top/bottom left/right */
 }
</style>
<div class="myDiv"></div>

https://riptutorial.com/ 219

https://i.stack.imgur.com/xWS9v.png
https://i.stack.imgur.com/Qrs3R.png

One value:

<style>
 .myDiv {
 padding: 25px; /* top/right/bottom/left */
 }
</style>
<div class="myDiv"></div>

Read Padding online: https://riptutorial.com/css/topic/1255/padding

https://riptutorial.com/ 220

https://i.stack.imgur.com/LiW8C.png
https://i.stack.imgur.com/GdRZW.png
https://riptutorial.com/css/topic/1255/padding

Chapter 44: Performance

Examples

Use transform and opacity to avoid trigger layout

Changing some CSS attribute will trigger the browser to synchronously calculate the style and
layout, which is a bad thing when you need to animate at 60fps.

DON'T

Animate with left and top trigger layout.

#box {
 left: 0;
 top: 0;
 transition: left 0.5s, top 0.5s;
 position: absolute;
 width: 50px;
 height: 50px;
 background-color: gray;
}

#box.active {
 left: 100px;
 top: 100px;
}

Demo took 11.7ms for rendering, 9.8ms for painting

https://riptutorial.com/ 221

https://jsfiddle.net/trungdq88/gmpzxLyq/

DO
Animate with transform with the same animation.

#box {

Demo same animation, took 1.3ms for rendering, 2.0ms for painting.

Read Performance online: https://riptutorial.com/css/topic/2867/performance

https://riptutorial.com/ 222

https://i.stack.imgur.com/AOima.png
https://jsfiddle.net/trungdq88/Logdo0rn/
https://i.stack.imgur.com/MLTAH.png
https://riptutorial.com/css/topic/2867/performance

Chapter 45: Positioning

Syntax

position: static|absolute|fixed|relative|sticky|initial|inherit|unset;•
z-index: auto|number|initial|inherit;•

Parameters

Parameter Details

static
Default value. Elements render in order, as they appear in the document flow.
The top, right, bottom, left and z-index properties do not apply.

relative
The element is positioned relative to its normal position, so left:20px adds 20
pixels to the element's LEFT position

fixed The element is positioned relative to the browser window

absolute
The element is positioned relative to its first positioned (not static) ancestor
element

initial Sets this property to its default value.

inherit Inherits this property from its parent element.

sticky
Experimental feature. It behaves like position: static within its parent until a
given offset threshold is reached, then it acts as position: fixed.

unset Combination of initial and inherit. More info here.

Remarks

Normal Flow is the flow of elements if the position of element is static.

defining width is beneficial because in some cases it prevents overlapping of element's
content.

1.

Examples

Fixed position

Defining position as fixed we can remove an element from the document flow and set its position
relatively to the browser window. One obvious use is when we want something to be visible when

https://riptutorial.com/ 223

https://developer.mozilla.org/en-US/docs/Web/CSS/unset

we scroll to the bottom of a long page.

#stickyDiv {
 position:fixed;
 top:10px;
 left:10px;
}

Overlapping Elements with z-index

To change the default stack order positioned elements (position property set to relative, absolute
or fixed), use the z-index property.

The higher the z-index, the higher up in the stacking context (on the z-axis) it is placed.

Example

In the example below, a z-index value of 3 puts green on top, a z-index of 2 puts red just under it,
and a z-index of 1 puts blue under that.

HTML

<div id="div1"></div>
<div id="div2"></div>
<div id="div3"></div>

CSS

div {
 position: absolute;
 height: 200px;
 width: 200px;
}
div#div1 {
 z-index: 1;
 left: 0px;
 top: 0px;
 background-color: blue;
}
div#div2 {
 z-index: 3;
 left: 100px;
 top: 100px;
 background-color: green;
}
div#div3 {
 z-index: 2;
 left: 50px;
 top: 150px;
 background-color: red;

https://riptutorial.com/ 224

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Positioning/Understanding_z_index/The_stacking_context

}

This creates the following effect:

See a working example at JSFiddle.

Syntax

z-index: [number] | auto;

Parameter Details

number
An integer value. A higher number is higher on the z-index stack. 0 is the default
value. Negative values are allowed.

auto Gives the element the same stacking context as its parent. (Default)

Remarks

All elements are laid out in a 3D axis in CSS, including a depth axis, measured by the z-index
property. z-index only works on positioned elements: (see: Why does z-index need a defined
position to work?). The only value where it is ignored is the default value, static.

Read about the z-index property and Stacking Contexts in the CSS Specification on layered
presentation and at the Mozilla Developer Network.

https://riptutorial.com/ 225

https://jsfiddle.net/esnc10tq/
https://www.sitepoint.com/community/t/why-does-z-index-need-a-defined-position-to-work/46115
https://www.sitepoint.com/community/t/why-does-z-index-need-a-defined-position-to-work/46115
https://drafts.csswg.org/css-position/#layered-presentation
https://developer.mozilla.org/en-US/docs/Web/CSS/z-index

Relative Position

Relative positioning moves the element in relation to where it would have been in normal flow
.Offset properties:

top1.
left2.
right3.
bottom4.

are used to indicate how far to move the element from where it would have been in normal flow.

.relpos{
 position:relative;
 top:20px;
 left:30px;
}

This code will move the box containing element with attribute class="relpos" 20px down and 30px
to the right from where it would have been in normal flow.

Absolute Position

When absolute positioning is used the box of the desired element is taken out of the Normal Flow
and it no longer affects the position of the other elements on the page. Offset properties:

top1.
left2.
right3.
bottom4.

specify the element should appear in relation to its next non-static containing element.

.abspos{
 position:absolute;
 top:0px;
 left:500px;
}

This code will move the box containing element with attribute class="abspos" down 0px and right
500px relative to its containing element.

Static positioning

The default position of an element is static. To quote MDN:

This keyword lets the element use the normal behavior, that is it is laid out in its current
position in the flow. The top, right, bottom, left and z-index properties do not apply.

https://riptutorial.com/ 226

https://developer.mozilla.org/en-US/docs/Web/CSS/position#values

.element{
 position:static;
}

Read Positioning online: https://riptutorial.com/css/topic/935/positioning

https://riptutorial.com/ 227

https://riptutorial.com/css/topic/935/positioning

Chapter 46: Pseudo-Elements

Introduction

Pseudo-elements, just like pseudo-classes, are added to a CSS selectors but instead of
describing a special state, they allow you to scope and style certain parts of an html element.

For example, the ::first-letter pseudo-element targets only the first letter of a block element
specified by the selector.

Syntax

selector::pseudo-element {property: value}•

Parameters

pseudo-
element

Description

::after Insert content after the content of an element

::before Insert content before the content of an element

::first-letter Selects the first letter of each element

::first-line Selects the first line of each element

::selection Matches the portion of an element that is selected by a user

::backdrop
Used to create a backdrop that hides the underlying document for an
element in the top layer's stack

::placeholder Allows you to style the placeholder text of a form element (Experimental)

::marker For applying list-style attributes on a given element (Experimental)

::spelling-
error

Represents a text segment which the browser has flagged as incorrectly
spelled (Experimental)

::grammar-error
Represents a text segment which the browser has flagged as
grammatically incorrect (Experimental)

Remarks

Sometimes you will see double colons (::) instead of just one (:). This is a way to separate •

https://riptutorial.com/ 228

pseudo-classes from pseudo-elements, but some older browsers like Internet Explorer 8
only supports single colon (:) for pseudo-elements.

One can use only one pseudo-element in a selector. It must appear after the simple
selectors in the statement.

•

Pseudo-elements are not a part of the DOM, therefore are not targetable by :hover or other
user events.

•

Examples

Pseudo-Elements

Pseudo-elements are added to selectors but instead of describing a special state, they allow you
to style certain parts of a document.

The content attribute is required for pseudo-elements to render; however, the attribute can have an
empty value (e.g. content: "").

div::after {
 content: 'after';
 color: red;
 border: 1px solid red;
}

div {
 color: black;
 border: 1px solid black;
 padding: 1px;
}

div::before {
 content: 'before';
 color: green;
 border: 1px solid green;
}

Pseudo-Elements in Lists

Pseudo-elements are often used to change the look of lists (mostly for unordered lists, ul).

The first step is to remove the default list bullets:

ul {
 list-style-type: none;
}

Then you add the custom styling. In this example, we will create gradient boxes for bullets.

https://riptutorial.com/ 229

http://i.stack.imgur.com/5Lu08.png

li:before {
 content: "";
 display: inline-block;
 margin-right: 10px;
 height: 10px;
 width: 10px;
 background: linear-gradient(red, blue);
}

HTML

 Test I
 Test II

Result

Read Pseudo-Elements online: https://riptutorial.com/css/topic/911/pseudo-elements

https://riptutorial.com/ 230

https://i.stack.imgur.com/y47uU.png
https://riptutorial.com/css/topic/911/pseudo-elements

Chapter 47: Selectors

Introduction

CSS selectors identify specific HTML elements as targets for CSS styles. This topic covers how
CSS selectors target HTML elements. Selectors use a wide range of over 50 selection methods
offered by the CSS language, including elements, classes, IDs, pseudo-elements and pseudo-
classes, and patterns.

Syntax

#id•
.classname•
:pseudo-classname•
::pseudo-elementname•
[attr] /* has the attr attribute. */•
[attr="value"] /* has the attr attribute, and its value is exactly "value". */•
[attr~="value"] /* has the attr attribute, and its value, when split on whitespace, contains "
value". */

•

[attr|="value"] /* has the attr attribute, and its value is exactly "value", or its value begins with
"value-". */

•

[attr^="value"] /* has the attr attribute, and its value begins with "value". */•
[attr$="value"] /* has the attr attribute, and its value ends with "value". */•
[attr*="value"] /* has the attr attribute, and its value contains "value". */•
element-name•
*•

Remarks

Sometimes you will see double colons (::) instead of just one (:). This is a way to separate
pseudo-classes from pseudo-elements.

•

Old browsers, like Internet Explorer 8, only support a single colon (:) for defining pseudo-
elements.

•

Unlike pseudo-classes, only one pseudo-element may be used per selector, if present it
must appear after the sequence of simple selectors that represents the subjects of the
selector (a future version of the W3C specification may allow multiple pseudo-elements per
selector).

•

Examples

Attribute Selectors

https://riptutorial.com/ 231

https://www.w3.org/TR/selectors/#pseudo-classes
https://www.w3.org/TR/selectors/#pseudo-elements
https://www.w3.org/TR/selectors/#pseudo-elements

Overview

Attribute selectors can be used with various types of operators that change the selection criteria
accordingly. They select an element using the presence of a given attribute or attribute value.

Selector(1) Matched element Selects elements...
CSS
Version

[attr] <div attr> With attribute attr 2

[attr='val'] <div attr="val"> Where attribute attr has value
val

2

[attr~='val'] <div attr="val val2
val3">

Where val appears in the
whitespace-separated list of attr

2

[attr^='val'] <div attr="val1 val2"> Where attr's value begins with
val

3

[attr$='val'] <div attr="sth aval"> Where the attr's value ends with
val

3

[attr*='val'] <div attr="somevalhere">
Where attr contains val
anywhere

3

[attr|='val'] <div attr="val-sth etc">
Where attr's value is exactly val,
or starts with val and immediately
followed by - (U+002D)

2

[attr='val' i] <div attr="val">
Where attr has value val,
ignoring val's letter casing.

4(2)

Notes:

The attribute value can be surrounded by either single-quotes or double-quotes. No quotes
at all may also work, but it's not valid according to the CSS standard, and is discouraged.

1.

There is no single, integrated CSS4 specification, because it is split into separate modules.
However, there are "level 4" modules. See browser support.

2.

Details
[attribute]

Selects elements with the given attribute.

div[data-color] {

https://riptutorial.com/ 232

http://caniuse.com/#feat=css-case-insensitive

 color: red;
}

<div data-color="red">This will be red</div>
<div data-color="green">This will be red</div>
<div data-background="red">This will NOT be red</div>

Live Demo on JSBin

[attribute="value"]

Selects elements with the given attribute and value.

div[data-color="red"] {
 color: red;
}

<div data-color="red">This will be red</div>
<div data-color="green">This will NOT be red</div>
<div data-color="blue">This will NOT be red</div>

Live Demo on JSBin

[attribute*="value"]

Selects elements with the given attribute and value where the given attribute contains the given
value anywhere (as a substring).

[class*="foo"] {
 color: red;
}

<div class="foo-123">This will be red</div>
<div class="foo123">This will be red</div>
<div class="bar123foo">This will be red</div>
<div class="barfooo123">This will be red</div>
<div class="barfo0">This will NOT be red</div>

Live Demo on JSBin

[attribute~="value"]

Selects elements with the given attribute and value where the given value appears in a
whitespace-separated list.

[class~="color-red"] {
 color: red;
}

<div class="color-red foo-bar the-div">This will be red</div>
<div class="color-blue foo-bar the-div">This will NOT be red</div>

https://riptutorial.com/ 233

http://jsbin.com/cezale/1/edit?html,css,output
http://jsbin.com/waxoked/1/edit?html,css,output
http://jsbin.com/dazige/1/edit?html,css,output

Live Demo on JSBin

[attribute^="value"]

Selects elements with the given attribute and value where the given attribute begins with the
value.

[class^="foo-"] {
 color: red;
}

<div class="foo-123">This will be red</div>
<div class="foo-234">This will be red</div>
<div class="bar-123">This will NOT be red</div>

Live Demo on JSBin

[attribute$="value"]

Selects elements with the given attribute and value where the given attribute ends with the given
value.

[class$="file"] {
 color: red;
}

<div class="foobar-file">This will be red</div>
<div class="foobar-file">This will be red</div>
<div class="foobar-input">This will NOT be red</div>

Live Demo on JSBin

[attribute|="value"]

Selects elements with a given attribute and value where the attribute's value is exactly the given
value or is exactly the given value followed by - (U+002D)

[lang|="EN"] {
 color: red;
}

<div lang="EN-us">This will be red</div>
<div lang="EN-gb">This will be red</div>
<div lang="PT-pt">This will NOT be red</div>

Live Demo on JSBin

[attribute="value" i]

Selects elements with a given attribute and value where the attribute's value can be represented

https://riptutorial.com/ 234

http://jsbin.com/posuhim/1/edit?html,css,output
http://jsbin.com/yowihi/1/edit?html,css,output
http://jsbin.com/yowihi/2/edit?html,css,output
http://jsbin.com/yowihi/3/edit?html,css,output

as Value, VALUE, vAlUe or any other case-insensitive possibility.

[lang="EN" i] {
 color: red;
}

<div lang="EN">This will be red</div>
<div lang="en">This will be red</div>
<div lang="PT">This will NOT be red</div>

Live Demo on JSBin

Specificity of attribute selectors
0-1-0

Same as class selector and pseudoclass.

*[type=checkbox] // 0-1-0

Note that this means an attribute selector can be used to select an element by its ID at a lower
level of specificity than if it was selected with an ID selector: [id="my-ID"] targets the same
element as #my-ID but with lower specificity.

See the Syntax Section for more details.

Combinators

Overview

Selector Description

div span Descendant selector (all s that are descendants of a <div>)

div > span Child selector (all s that are a direct child of a <div>)

a ~ span General Sibling selector (all s that are siblings after an <a>)

a + span Adjacent Sibling selector (all s that are immediately after an <a>)

Note: Sibling selectors target elements that come after them in the source document.
CSS, by its nature (it cascades), cannot target previous or parent elements. However,
using the flex order property, a previous sibling selector can be simulated on visual
media.

https://riptutorial.com/ 235

http://jsbin.com/yowihi/4/edit?html,css,output
http://www.riptutorial.com/css/example/2212/id-selectors
http://www.riptutorial.com/css/topic/611/selectors
http://stackoverflow.com/a/36118012/3597276
http://stackoverflow.com/a/36118012/3597276

Descendant Combinator: selector selector

A descendant combinator, represented by at least one space character (), selects elements that
are a descendant of the defined element. This combinator selects all descendants of the element
(from child elements on down).

div p {
 color:red;
}

<div>
 <p>My text is red</p>
 <section>
 <p>My text is red</p>
 </section>
</div>

<p>My text is not red</p>

Live Demo on JSBin

In the above example, the first two <p> elements are selected since they are both descendants of
the <div>.

Child Combinator: selector > selector

The child (>) combinator is used to select elements that are children, or direct descendants, of
the specified element.

div > p {
 color:red;
}

<div>
 <p>My text is red</p>
 <section>
 <p>My text is not red</p>
 </section>
</div>

Live Demo on JSBin

The above CSS selects only the first <p> element, as it is the only paragraph directly descended
from a <div>.

The second <p> element is not selected because it is not a direct child of the <div>.

https://riptutorial.com/ 236

http://jsbin.com/xonafuz/2/edit?html,css,output
http://jsbin.com/xonafuz/3/edit?html,css,output

Adjacent Sibling Combinator: selector + selector

The adjacent sibling (+) combinator selects a sibling element that immediate follows a specified
element.

p + p {
 color:red;
}

<p>My text is not red</p>
<p>My text is red</p>
<p>My text is red</p>
<hr>
<p>My text is not red</p>

Live Demo on JSBin

The above example selects only those <p> elements which are directly preceded by another <p>
element.

General Sibling Combinator: selector ~ selector

The general sibling (~) combinator selects all siblings that follow the specified element.

p ~ p {
 color:red;
}

<p>My text is not red</p>
<p>My text is red</p>
<hr>
<h1>And now a title</h1>
<p>My text is red</p>

Live Demo on JSBin

The above example selects all <p> elements that are preceded by another <p> element, whether or
not they are immediately adjacent.

Class Name Selectors

The class name selector select all elements with the targeted class name. For example, the class
name .warning would select the following <div> element:

<div class="warning">
 <p>This would be some warning copy.</p>
</div>

https://riptutorial.com/ 237

http://jsbin.com/xonafuz/4/edit?html,css,output
http://jsbin.com/xonafuz/5/edit?html,css,output

You can also combine class names to target elements more specifically. Let's build on the
example above to showcase a more complicated class selection.

CSS

.important {
 color: orange;
}
.warning {
 color: blue;
}
.warning.important {
 color: red;
}

HTML

<div class="warning">
 <p>This would be some warning copy.</p>
</div>

<div class="important warning">
 <p class="important">This is some really important warning copy.</p>
</div>

In this example, all elements with the .warning class will have a blue text color, elements with the
.important class with have an orange text color, and all elements that have both the .important and
.warning class name will have a red text color.

Notice that within the CSS, the .warning.important declaration did not have any spaces between
the two class names. This means it will only find elements which contain both class names warning
and important in their class attribute. Those class names could be in any order on the element.

If a space was included between the two classes in the CSS declaration, it would only select
elements that have parent elements with a .warning class names and child elements with
.important class names.

ID selectors

ID selectors select DOM elements with the targeted ID. To select an element by a specific ID in
CSS, the # prefix is used.

For example, the following HTML div element…

<div id="exampleID">
 <p>Example</p>
</div>

…can be selected by #exampleID in CSS as shown below:

#exampleID {

https://riptutorial.com/ 238

 width: 20px;
}

Note: The HTML specs do not allow multiple elements with the same ID

Pseudo-classes

Pseudo-classes are keywords which allow selection based on information that lies outside of the
document tree or that cannot be expressed by other selectors or combinators. This information
can be associated to a certain state (state and dynamic pseudo-classes), to locations (structural
and target pseudo-classes), to negations of the former (negation pseudo-class) or to languages (
lang pseudo-class). Examples include whether or not a link has been followed (:visited), the
mouse is over an element (:hover), a checkbox is checked (:checked), etc.

Syntax

selector:pseudo-class {
 property: value;
}

List of pseudo-classes:

Name Description

:active Applies to any element being activated (i.e. clicked) by the user.

:any
Allows you to build sets of related selectors by creating groups that the
included items will match. This is an alternative to repeating an entire
selector.

:target
Selects the current active #news element (clicked on a URL
containing that anchor name)

:checked
Applies to radio, checkbox, or option elements that are checked
or toggled into an "on" state.

:default
Represents any user interface element that is the default among a group of
similar elements.

:disabled Applies to any UI element which is in a disabled state.

:empty Applies to any element which has no children.

:enabled Applies to any UI element which is in an enabled state.

:first
Used in conjunction with the @page rule, this selects the first page in a
printed document.

https://riptutorial.com/ 239

https://www.w3.org/TR/selectors/#pseudo-classes
https://www.w3.org/TR/selectors/#UIstates
https://www.w3.org/TR/selectors/#dynamic-pseudos
https://www.w3.org/TR/selectors/#structural-pseudos
https://www.w3.org/TR/selectors/#target-pseudo
https://www.w3.org/TR/selectors/#negation
https://www.w3.org/TR/selectors/#lang-pseudo
https://www.w3.org/TR/css3-selectors/#the-user-action-pseudo-classes-hover-act
https://developer.mozilla.org/en-US/docs/Web/CSS/:any
https://developer.mozilla.org/en-US/docs/Web/CSS/:target
https://www.w3.org/TR/css3-selectors/#checked
https://developer.mozilla.org/en-US/docs/Web/CSS/:default
https://www.w3.org/TR/css3-selectors/#enableddisabled
https://www.w3.org/TR/selectors/#empty-pseudo
https://www.w3.org/TR/css3-selectors/#enableddisabled
http://tympanus.net/codrops/css_reference/first

Name Description

:first-child Represents any element that is the first child element of its parent.

:first-of-type
Applies when an element is the first of the selected element type
inside its parent. This may or may not be the first-child.

:focus
Applies to any element which has the user's focus. This can be given by
the
user's keyboard, mouse events, or other forms of input.

:focus-within
Can be used to highlight a whole section when one element inside it is
focused. It matches any element that the :focus pseudo-class matches or
that has a descendant focused.

:full-screen
Applies to any element displayed in full-screen mode. It selects the whole
stack
of elements and not just the top level element.

:hover
Applies to any element being hovered by the user's pointing device, but
not activated.

:indeterminate
Applies radio or checkbox UI elements which are neither checked nor
unchecked, but are in an indeterminate state. This can be due to an
element's attribute or DOM manipulation.

:in-range

The :in-range CSS pseudo-class matches when an element has
its value attribute inside the specified range limitations for this element.
It allows the page to give a feedback that the value currently defined
using the element is inside the range limits.

:invalid
Applies to <input> elements whose values are invalid according to
the type specified in the type= attribute.

:lang
Applies to any element who's wrapping <body> element has a properly
designated lang= attribute. For the pseudo-class to be valid, it must
contain a valid two or three letter language code.

:last-child Represents any element that is the last child element of its parent.

:last-of-type
Applies when an element is the last of the selected element type inside
its parent. This may or may not be the last-child.

:left
Used in conjunction with the @page rule, this selects all the left
pages in a printed document.

:link Applies to any links which haven't been visited by the user.

Applies to all elements which do not match the value passed to
(:not(p) or :not(.class-name) for example. It must have a value to be

:not()

https://riptutorial.com/ 240

https://developer.mozilla.org/en-US/docs/Web/CSS/:first-child
https://www.w3.org/TR/css3-selectors/#first-of-type-pseudo
https://www.w3.org/TR/css3-selectors/#the-user-action-pseudo-classes-hover-act
https://developer.mozilla.org/en-US/docs/Web/CSS/:focus-within
https://developer.mozilla.org/en-US/docs/Web/CSS/:fullscreen
https://www.w3.org/TR/css3-selectors/#the-user-action-pseudo-classes-hover-act
https://www.w3.org/TR/css3-selectors/#indeterminate
https://developer.mozilla.org/en-US/docs/Web/CSS/:in-range
http://tympanus.net/codrops/css_reference/invalid/
https://www.w3.org/TR/css3-selectors/#lang-pseudo
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://developer.mozilla.org/en-US/docs/Web/CSS/:last-child
https://www.w3.org/TR/css3-selectors/#last-of-type-pseudo
http://tympanus.net/codrops/css_reference/left_pseudo-class/
https://www.w3.org/TR/css3-selectors/#the-link-pseudo-classes-link-and-visited
https://www.w3.org/wiki/CSS/Selectors/pseudo-classes/:not

Name Description

valid and it can only contain one selector. However, you can chain multiple
:not selectors together.

:nth-child
Applies when an element is the n-th element of its parent, where n
can be an integer, a mathematical expression (e.g n+3) or the keywords
odd or even.

:nth-of-type
Applies when an element is the n-th element of its parent of the
same element type, where n can be an integer, a mathematical
expression (e.g n+3) or the keywords odd or even.

:only-child

The :only-child CSS pseudo-class represents any element
which is the only child of its parent. This is the same as
:first-child:last-child or :nth-child(1):nth-last-child(1),
but with a lower specificity.

:optional
The :optional CSS pseudo-class represents any element
that does not have the required attribute set on it. This allows
forms to easily indicate optional fields and to style them accordingly.

:out-of-range

The :out-of-range CSS pseudo-class matches when an element has its
value attribute outside the specified range limitations for this element.
It allows the page to give a feedback that the value currently defined using
the
element is outside the range limits. A value can be outside of a range if it is
either smaller or larger than maximum and minimum set values.

:placeholder-
shown

Experimental. Applies to any form element currently displaying
placeholder text.

:read-only Applies to any element which is not editable by the user.

:read-write Applies to any element that is editable by a user, such as <input> elements.

:right
Used in conjunction with the @page rule, this selects all the right pages in a
printed document.

:root matches the root element of a tree representing the document.

:scope
CSS pseudo-class matches the elements that are a reference
point for selectors to match against.

:target
Selects the current active #news element (clicked on a URL
containing that anchor name)

:visited Applies to any links which have has been visited by the user.

https://riptutorial.com/ 241

https://www.w3.org/TR/css3-selectors/#nth-child-pseudo
https://www.w3.org/TR/css3-selectors/#nth-of-type-pseudo
https://developer.mozilla.org/en-US/docs/Web/CSS/:only-child
https://developer.mozilla.org/en-US/docs/Web/CSS/:optional
https://developer.mozilla.org/en-US/docs/Web/CSS/:out-of-range
https://developer.mozilla.org/en-US/docs/Web/CSS/:placeholder-shown
https://developer.mozilla.org/en-US/docs/Web/CSS/:placeholder-shown
https://developer.mozilla.org/en-US/docs/Web/CSS/:read-only
https://developer.mozilla.org/en-US/docs/Web/CSS/:read-write
http://tympanus.net/codrops/css_reference/right_pseudo-class
https://developer.mozilla.org/en-US/docs/Web/CSS/:root
https://developer.mozilla.org/en-US/docs/Web/CSS/:scope
https://developer.mozilla.org/en-US/docs/Web/CSS/:target
https://www.w3.org/TR/css3-selectors/#the-link-pseudo-classes-link-and-visited

The :visited pseudoclass can't be used for most styling in a lot of modern browsers
anymore because it's a security hole. See this link for reference.

Basic selectors

Selector Description

* Universal selector (all elements)

div Tag selector (all <div> elements)

.blue Class selector (all elements with class blue)

.blue.red All elements with class blue and red (a type of Compound selector)

#headline ID selector (the element with "id" attribute set to headline)

:pseudo-class All elements with pseudo-class

::pseudo-element Element that matches pseudo-element

:lang(en) Element that matches :lang declaration, for example

div > p child selector

Note: The value of an ID must be unique in a web page. It is a violation of the HTML
standard to use the value of an ID more than once in the same document tree.

A complete list of selectors can be found in the CSS Selectors Level 3 specification.

How to style a Range input

HTML

<input type="range"></input>

CSS

Effect Pseudo Selector

Thumb input[type=range]::-webkit-slider-thumb, input[type=range]::-moz-range-
thumb, input[type=range]::-ms-thumb

Track input[type=range]::-webkit-slider-runnable-track, input[type=range]::-moz-
range-track, input[type=range]::-ms-track

OnFocus input[type=range]:focus

Lower part of
the track

input[type=range]::-moz-range-progress, input[type=range]::-ms-fill-lower
(not possible in WebKit browsers currently - JS needed)

https://riptutorial.com/ 242

https://hacks.mozilla.org/2010/03/privacy-related-changes-coming-to-css-vistited/
http://www.riptutorial.com/css/example/2220/pseudo-classes
http://stackoverflow.com/documentation/css/911/pseudo-elements/16491/pseudo-elements
https://www.w3.org/TR/html/dom.html#the-id-attribute
https://www.w3.org/TR/html/dom.html#the-id-attribute
https://www.w3.org/TR/css3-selectors/#selectors

Global boolean with checkbox:checked and ~ (general sibling combinator)

With the ~ selector, you can easily implement a global accessible boolean without using
JavaScript.

Add boolean as a checkbox

To the very beginning of your document, add as much booleans as you want with a unique id and
the hidden attribute set:

<input type="checkbox" id="sidebarShown" hidden />
<input type="checkbox" id="darkThemeUsed" hidden />

<!-- here begins actual content, for example: -->
<div id="container">
 <div id="sidebar">
 <!-- Menu, Search, ... -->
 </div>

 <!-- Some more content ... -->
</div>

<div id="footer">
 <!-- ... -->
</div>

Change the boolean's value

You can toggle the boolean by adding a label with the for attribute set:

<label for="sidebarShown">Show/Hide the sidebar!</label>

Accessing boolean value with CSS

The normal selector (like .color-red) specifies the default properties. They can be overridden by
following true / false selectors:

/* true: */
<checkbox>:checked ~ [sibling of checkbox & parent of target] <target>

/* false: */
<checkbox>:not(:checked) ~ [sibling of checkbox & parent of target] <target>

Note that <checkbox>, [sibling ...] and <target> should be replaced by the proper selectors.
[sibling ...] can be a specific selector, (often if you're lazy) simply * or nothing if the target is
already a sibling of the checkbox.

https://riptutorial.com/ 243

Examples for the above HTML structure would be:

#sidebarShown:checked ~ #container #sidebar {
 margin-left: 300px;
}

#darkThemeUsed:checked ~ #container,
#darkThemeUsed:checked ~ #footer {
 background: #333;
}

In action

See this fiddle for a implementation of these global booleans.

CSS3 :in-range selector example

<style>
input:in-range {
 border: 1px solid blue;
}
</style>

<input type="number" min="10" max="20" value="15">
<p>The border for this value will be blue</p>

The :in-range CSS pseudo-class matches when an element has its value attribute inside the
specified range limitations for this element. It allows the page to give a feedback that the value
currently defined using the element is inside the range limits.[1]

Child Pseudo Class

"The :nth-child(an+b) CSS pseudo-class matches an element that has an+b-1 siblings
before it in the document tree, for a given positive or zero value for n" - MDN :nth-child

pseudo-selector 1 2 3 4 5 6 7 8 9 10

:first-child ✔

:nth-child(3) ✔

:nth-child(n+3) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

:nth-child(3n) ✔ ✔ ✔

:nth-child(3n+1) ✔ ✔ ✔ ✔

:nth-child(-n+3) ✔ ✔ ✔

https://riptutorial.com/ 244

https://jsfiddle.net/yokosbm0/1/
https://developer.mozilla.org/en-US/docs/Web/CSS/:in-range
https://developer.mozilla.org/en-US/docs/Web/CSS/:nth-child

pseudo-selector 1 2 3 4 5 6 7 8 9 10

:nth-child(odd) ✔ ✔ ✔ ✔ ✔

:nth-child(even) ✔ ✔ ✔ ✔ ✔

:last-child ✔

:nth-last-child(3) ✔

Select element using its ID without the high specificity of the ID selector

This trick helps you select an element using the ID as a value for an attribute selector to avoid the
high specificity of the ID selector.

HTML:

<div id="element">...</div>

CSS

#element { ... } /* High specificity will override many selectors */

[id="element"] { ... } /* Low specificity, can be overridden easily */

A. The :not pseudo-class example & B. :focus-within CSS pseudo-class

A. The syntax is presented above.

The following selector matches all <input> elements in an HTML document that are not disabled
and don't have the class .example:

HTML:

<form>
 Phone: <input type="tel" class="example">
 E-mail: <input type="email" disabled="disabled">
 Password: <input type="password">
</form>

CSS:

input:not([disabled]):not(.example){
 background-color: #ccc;
}

The :not() pseudo-class will also support comma-separated selectors in Selectors Level 4:

CSS:

https://riptutorial.com/ 245

input:not([disabled], .example){
 background-color: #ccc;
}

Live Demo on JSBin

See background syntax here.

B. The :focus-within CSS pseudo-class

HTML:

 <h3>Background is blue if the input is focused .</p>
 <div>
 <input type="text">
 </div>

CSS:

div {
 height: 80px;
}
input{
 margin:30px;
}
div:focus-within {
 background-color: #1565C0;
}

https://riptutorial.com/ 246

http://jsbin.com/japere/edit?html,css,output
http://www.riptutorial.com/css/example/1055/background-color
https://i.stack.imgur.com/S4ke4.png

The :only-child pseudo-class selector example

The :only-child CSS pseudo-class represents any element which is the only child of its parent.

HTML:

<div>
 <p>This paragraph is the only child of the div, it will have the color blue</p>
</div>

<div>
 <p>This paragraph is one of the two children of the div</p>
 <p>This paragraph is one of the two children of its parent</p>
</div>

CSS:

p:only-child {

https://riptutorial.com/ 247

https://i.stack.imgur.com/YGn3H.png

 color: blue;
}

The above example selects the <p> element that is the unique child from its parent, in this case a
<div>.

Live Demo on JSBin

The :last-of-type selector

The :last-of-type selects the element that is the last child, of a particular type, of its parent. In the
example below, the css selects the last paragraph and the last heading h1.

p:last-of-type {
 background: #C5CAE9;
}
h1:last-of-type {
 background: #CDDC39;
}

<div class="container">
 <p>First paragraph</p>
 <p>Second paragraph</p>
 <p>Last paragraph</p>
 <h1>Heading 1</h1>
 <h2>First heading 2</h2>
 <h2>Last heading 2</h2>
</div>

jsFiddle

Read Selectors online: https://riptutorial.com/css/topic/611/selectors

https://riptutorial.com/ 248

https://jsbin.com/dizosi/edit?html,css
http://i.stack.imgur.com/8RYda.png
http://jsfiddle.net/MadalinaTn/YmMZZ/113/
https://riptutorial.com/css/topic/611/selectors

Chapter 48: Shapes for Floats

Syntax

shape-outside: none | [<basic-shape> || <shape-box>] | <image>•

shape-margin: <length> | <percentage>•

shape-image-threshold: <number>•

Parameters

Parameter Details

none
A value of none means that the float area (the area that is used for wrapping
content around a float element) is unaffected. This is the default/initial value.

basic-
shape

Refers to one among inset(), circle(), ellipse() or polygon(). Using one of
these functions and its values the shape is defined.

shape-box
Refers to one among margin-box, border-box, padding-box, content-box. When
only <shape-box> is provided (without <basic-shape>) this box is the shape.
When it is used along with <basic-shape>, this acts as the reference box.

image
When an image is provided as value, the shape is computed based on the
alpha channel of the image specified.

Remarks

Browser support for the CSS Shapes module is very limited at this point in time.

It is supported in Chrome v37+ and Opera 24+ without browser/vendor prefixes. Safari supports it
from v7.1+ but with the -webkit- prefix.

It is not yet supported in IE, Edge and Firefox.

Examples

Shape Outside with Basic Shape – circle()

With the shape-outside CSS property one can define shape values for the float area so that the
inline content wraps around the shape instead of the float's box.

CSS

https://riptutorial.com/ 249

img:nth-of-type(1) {
 shape-outside: circle(80px at 50% 50%);
 float: left;
 width: 200px;
}
img:nth-of-type(2) {
 shape-outside: circle(80px at 50% 50%);
 float: right;
 width: 200px;
}
p {
 text-align: center;
 line-height: 30px; /* purely for demo */
}

HTML

<p>Some paragraph whose text content is required to be wrapped such that it follows the curve
of the circle on either side. And then there is some filler text just to make the text long
enough. Lorem Ipsum Dolor Sit Amet....</p>

In the above example, both the images are actually square images and when the text is placed
without the shape-outside property, it will not flow around the circle on either side. It will flow around
the containing box of the image only. With shape-outside the float area is re-defined as a circle and
the content is made to flow around this imaginary circle that is created using shape-outside.

The imaginary circle that is used to re-define the float area is a circle with radius of 80px drawn
from the center-mid point of the image's reference box.

Below are a couple of screenshots to illustrate how the content would be wrapped around when
shape-outside is used and when it is not used.

Output with shape-outside

Output without shape-outside

https://riptutorial.com/ 250

http://i.stack.imgur.com/xbFg3m.png
http://i.stack.imgur.com/umeRym.png

Shape margin

The shape-margin CSS property adds a margin to shape-outside.

CSS

img:nth-of-type(1) {
 shape-outside: circle(80px at 50% 50%);
 shape-margin: 10px;
 float: left;
 width: 200px;
}
img:nth-of-type(2) {
 shape-outside: circle(80px at 50% 50%);
 shape-margin: 10px;
 float: right;
 width: 200px;
}
p {
 text-align: center;
 line-height: 30px; /* purely for demo */
}

HTML

<p>Some paragraph whose text content is required to be wrapped such that it follows the curve
of the circle on either side. And then there is some filler text just to make the text long
enough. Lorem Ipsum Dolor Sit Amet....</p>

In this example, a 10px margin is added around the shape using shape-margin. This creates a bit
more space between the imaginary circle that defines the float area and the actual content that is
flowing around.

Output:

Read Shapes for Floats online: https://riptutorial.com/css/topic/2034/shapes-for-floats

https://riptutorial.com/ 251

http://i.stack.imgur.com/GKLvlm.png
https://riptutorial.com/css/topic/2034/shapes-for-floats

Chapter 49: Single Element Shapes

Examples

Square

To create a square, define an element with both a width and height. In the example below, we
have an element with a width and height of 100 pixels each.

<div class="square"></div>

.square {
 width: 100px;
 height: 100px;
 background: rgb(246, 156, 85);
}

Triangles

To create a CSS triangle define an element with a width and height of 0 pixels. The triangle shape
will be formed using border properties. For an element with 0 height and width the 4 borders (top,
right, bottom, left) each form a triangle. Here's an element with 0 height/width and 4 different
colored borders.

By setting some borders to transparent, and others to a color we can create various triangles. For
example, in the Up triangle, we set the bottom border to the desired color, then set the left and
right borders to transparent. Here's an image with the left and right borders shaded slightly to
show how the triangle is being formed.

https://riptutorial.com/ 252

https://i.stack.imgur.com/uV3Yp.png
https://i.stack.imgur.com/ovUuO.png

The dimensions of the triangle can be altered by changing the different border widths - taller,
shorter, lopsided, etc. The examples below all show a 50x50 pixel triangle.

Triangle - Pointing Up

<div class="triangle-up"></div>

.triangle-up {
 width: 0;
 height: 0;
 border-left: 25px solid transparent;
 border-right: 25px solid transparent;
 border-bottom: 50px solid rgb(246, 156, 85);
}

Triangle - Pointing Down

<div class="triangle-down"></div>

.triangle-down {
 width: 0;
 height: 0;
 border-left: 25px solid transparent;
 border-right: 25px solid transparent;
 border-top: 50px solid rgb(246, 156, 85);
}

Triangle - Pointing Right

https://riptutorial.com/ 253

https://i.stack.imgur.com/rR8Si.png
https://i.stack.imgur.com/xGJtr.png
https://i.stack.imgur.com/wOVoW.png

<div class="triangle-right"></div>

.triangle-right {
 width: 0;
 height: 0;
 border-top: 25px solid transparent;
 border-bottom: 25px solid transparent;
 border-left: 50px solid rgb(246, 156, 85);
}

Triangle - Pointing Left

<div class="triangle-left"></div>

.triangle-left {
 width: 0;
 height: 0;
 border-top: 25px solid transparent;
 border-bottom: 25px solid transparent;
 border-right: 50px solid rgb(246, 156, 85);
}

Triangle - Pointing Up/Right

<div class="triangle-up-right"></div>

.triangle-up-right {
 width: 0;
 height: 0;
 border-top: 50px solid rgb(246, 156, 85);
 border-left: 50px solid transparent;
}

https://riptutorial.com/ 254

https://i.stack.imgur.com/KxeC4.png
https://i.stack.imgur.com/X1y9B.png
https://i.stack.imgur.com/ITZW8.png

Triangle - Pointing Up/Left

<div class="triangle-up-left"></div>

.triangle-up-left {
 width: 0;
 height: 0;
 border-top: 50px solid rgb(246, 156, 85);
 border-right: 50px solid transparent;
}

Triangle - Pointing Down/Right

<div class="triangle-down-right"></div>

.triangle-down-right {
 width: 0;
 height: 0;
 border-bottom: 50px solid rgb(246, 156, 85);
 border-left: 50px solid transparent;
}

Triangle - Pointing Down/Left

<div class="triangle-down-left"></div>

.triangle-down-left {
 width: 0;
 height: 0;
 border-bottom: 50px solid rgb(246, 156, 85);
 border-right: 50px solid transparent;

https://riptutorial.com/ 255

https://i.stack.imgur.com/MIv7O.png
https://i.stack.imgur.com/ephyF.png
https://i.stack.imgur.com/MubUg.png

}

Bursts

A burst is similar to a star but with the points extending less distance from the body. Think of a
burst shape as a square with additional, slightly rotated, squares layered on top.

The additional squares are created using the ::before and ::after psuedo-elements.

8 Point Burst

An 8 point burst are 2 layered squares. The bottom square is the element itself, the additional
square is created using the :before pseudo-element. The bottom is rotated 20°, the top square is
rotated 135°.

<div class="burst-8"></div>

.burst-8 {
 background: rgb(246, 156, 85);
 width: 40px;
 height: 40px;
 position: relative;
 text-align: center;
 -ms-transform: rotate(20deg);
 transform: rotate(20eg);
}

.burst-8::before {
 content: "";
 position: absolute;
 top: 0;
 left: 0;
 height: 40px;
 width: 40px;
 background: rgb(246, 156, 85);
 -ms-transform: rotate(135deg);
 transform: rotate(135deg);
}

12 Point Burst

An 12 point burst are 3 layered squares. The bottom square is the element itself, the additional
squares are created using the :before and :after pseudo-elements. The bottom is rotated 0°, the
next square is rotated 30°, and the top is rotated 60°.

https://riptutorial.com/ 256

http://i.stack.imgur.com/JLVxn.png

<div class="burst-12"></div>

.burst-12 {
 width: 40px;
 height: 40px;
 position: relative;
 text-align: center;
 background: rgb(246, 156, 85);
}

.burst-12::before, .burst-12::after {
 content: "";
 position: absolute;
 top: 0;
 left: 0;
 height: 40px;
 width: 40px;
 background: rgb(246, 156, 85);
}

.burst-12::before {
 -ms-transform: rotate(30deg);
 transform: rotate(30deg);
}

.burst-12::after {
 -ms-transform: rotate(60deg);
 transform: rotate(60deg);
}

Circles and Ellipses

Circle

To create a circle, define an element with an equal width and height (a square) and then set the
border-radius property of this element to 50%.

HTML

<div class="circle"></div>

https://riptutorial.com/ 257

http://i.stack.imgur.com/kqLgi.png
http://www.riptutorial.com/css/example/9690/square

CSS

.circle {
 width: 50px;
 height: 50px;
 background: rgb(246, 156, 85);
 border-radius: 50%;
}

Ellipse

An ellipse is similar to a circle, but with different values for width and height.

HTML

<div class="oval"></div>

CSS

.oval {
 width: 50px;
 height: 80px;
 background: rgb(246, 156, 85);
 border-radius: 50%;
}

Trapezoid

A trapezoid can be made by a block element with zero height (height of 0px), a width greater than
zero and a border, that is transparent except for one side:

HTML:

https://riptutorial.com/ 258

http://i.stack.imgur.com/W1JRR.png

<div class="trapezoid"></div>

CSS:

.trapezoid {
 width: 50px;
 height: 0;
 border-left: 50px solid transparent;
 border-right: 50px solid transparent;
 border-bottom: 100px solid black;
}

With changing the border sides, the orientation of the trapezoid can be adjusted.

Cube

This example shows how to create a cube using 2D transformation methods skewX() and skewY()
on pseudo elements.

HTML:

<div class="cube"></div>

CSS:

.cube {
 background: #dc2e2e;
 width: 100px;
 height: 100px;
 position: relative;
 margin: 50px;
}

.cube::before {
 content: '';
 display: inline-block;
 background: #f15757;
 width: 100px;
 height: 20px;
 transform: skewX(-40deg);
 position: absolute;
 top: -20px;
 left: 8px;

https://riptutorial.com/ 259

https://i.stack.imgur.com/UeEQM.png

}

.cube::after {
 content: '';
 display: inline-block;
 background: #9e1515;
 width: 16px;
 height: 100px;
 transform: skewY(-50deg);
 position: absolute;
 top: -10px;
 left: 100%;
}

See demo

Pyramid

This example shows how to create a pyramid using borders and 2D transformation methods
skewY() and rotate() on pseudo elements.

HTML:

<div class="pyramid"></div>

CSS:

.pyramid {
 width: 100px;
 height: 200px;
 position: relative;
 margin: 50px;
}

.pyramid::before,.pyramid::after {
 content: '';
 display: inline-block;
 width: 0;
 height: 0;
 border: 50px solid;
 position: absolute;
}

.pyramid::before {
 border-color: transparent transparent #ff5656 transparent;

https://riptutorial.com/ 260

https://jsfiddle.net/codename0/9po0r1L1/
https://i.stack.imgur.com/eUJiX.png

 transform: scaleY(2) skewY(-40deg) rotate(45deg);
}

.pyramid::after {
 border-color: transparent transparent #d64444 transparent;
 transform: scaleY(2) skewY(40deg) rotate(-45deg);
}

Read Single Element Shapes online: https://riptutorial.com/css/topic/2862/single-element-shapes

https://riptutorial.com/ 261

https://riptutorial.com/css/topic/2862/single-element-shapes

Chapter 50: Stacking Context

Examples

Stacking Context

In this example every positioned element creates its own stacking context, because of their
positioning and z-index values. The hierarchy of stacking contexts is organized as follows:

Root
DIV #1○

DIV #2○

DIV #3○

DIV #4○

DIV #5○

DIV #6○

•

It is important to note that DIV #4, DIV #5 and DIV #6 are children of DIV #3, so stacking of those
elements is completely resolved within DIV#3. Once stacking and rendering within DIV #3 is
completed, the whole DIV #3 element is passed for stacking in the root element with respect to its
sibling's DIV.

HTML:

<div id="div1">
 <h1>Division Element #1</h1>
 <code>position: relative;

https://riptutorial.com/ 262

https://i.stack.imgur.com/nKKSo.png

 z-index: 5;</code>
</div>
<div id="div2">
 <h1>Division Element #2</h1>
 <code>position: relative;

 z-index: 2;</code>
</div>
<div id="div3">
 <div id="div4">
 <h1>Division Element #4</h1>
 <code>position: relative;

 z-index: 6;</code>
 </div>
 <h1>Division Element #3</h1>
 <code>position: absolute;

 z-index: 4;</code>
 <div id="div5">
 <h1>Division Element #5</h1>
 <code>position: relative;

 z-index: 1;</code>
 </div>
 <div id="div6">
 <h1>Division Element #6</h1>
 <code>position: absolute;

 z-index: 3;</code>
 </div>
</div>

CSS:

* {
 margin: 0;
}
html {
 padding: 20px;
 font: 12px/20px Arial, sans-serif;
}
div {
 opacity: 0.7;
 position: relative;
}
h1 {
 font: inherit;
 font-weight: bold;
}
#div1,
#div2 {
 border: 1px dashed #696;
 padding: 10px;
 background-color: #cfc;
}
#div1 {
 z-index: 5;
 margin-bottom: 190px;
}
#div2 {
 z-index: 2;
}
#div3 {
 z-index: 4;

https://riptutorial.com/ 263

 opacity: 1;
 position: absolute;
 top: 40px;
 left: 180px;
 width: 330px;
 border: 1px dashed #900;
 background-color: #fdd;
 padding: 40px 20px 20px;
}
#div4,
#div5 {
 border: 1px dashed #996;
 background-color: #ffc;
}
#div4 {
 z-index: 6;
 margin-bottom: 15px;
 padding: 25px 10px 5px;
}
#div5 {
 z-index: 1;
 margin-top: 15px;
 padding: 5px 10px;
}
#div6 {
 z-index: 3;
 position: absolute;
 top: 20px;
 left: 180px;
 width: 150px;
 height: 125px;
 border: 1px dashed #009;
 padding-top: 125px;
 background-color: #ddf;
 text-align: center;
}

Result:

https://riptutorial.com/ 264

Source: https://developer.mozilla.org/en-
US/docs/Web/CSS/CSS_Positioning/Understanding_z_index/The_stacking_context.

Read Stacking Context online: https://riptutorial.com/css/topic/5037/stacking-context

https://riptutorial.com/ 265

https://i.stack.imgur.com/nKKSo.png
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Positioning/Understanding_z_index/The_stacking_context
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Positioning/Understanding_z_index/The_stacking_context
https://riptutorial.com/css/topic/5037/stacking-context

Chapter 51: Structure and Formatting of a
CSS Rule

Remarks

For ease of readability, keep all declarations indented one level from their selector, and the closing
curly brace on its own line. Add a single space after selectors and colons, and always place a
semicolon after the final declaration.

Good

p {
 color: maroon;
 font-size: 16px;
}

Bad

p{
 color: maroon;
font-size:16px }

One-Liner

If there are only one or two declarations, you might get away with this one. Not recommended for
most cases. Always be consistent when possible.

p { color: maroon; font-size: 16px; }

Examples

Rules, Selectors, and Declaration Blocks

A CSS rule consists of a selector (e.g. h1) and declaration block ({}).

h1 {}

Property Lists

Some properties can take multiple values, collectively known as a property list.

https://riptutorial.com/ 266

/* Two values in this property list */
span {
 text-shadow: yellow 0 0 3px, green 4px 4px 10px;
}

/* Alternate Formatting */
span {
 text-shadow:
 yellow 0 0 3px,
 green 4px 4px 10px;
}

Multiple Selectors

When you group CSS selectors, you apply the same styles to several different elements without
repeating the styles in your style sheet. Use a comma to separate multiple grouped selectors.

div, p { color: blue }

So the blue color applies to all <div> elements and all <p> elements. Without the comma only <p>
elements that are a child of a <div> would be red.

This also applies to all types of selectors.

p, .blue, #first, div span{ color : blue }

This rule applies to:

<p>•
elements of the blue class•
element with the ID first•
every inside of a <div>•

Read Structure and Formatting of a CSS Rule online:
https://riptutorial.com/css/topic/4313/structure-and-formatting-of-a-css-rule

https://riptutorial.com/ 267

https://riptutorial.com/css/topic/4313/structure-and-formatting-of-a-css-rule

Chapter 52: Tables

Syntax

table-layout: auto | fixed;•
border-collapse: separate | collapse;•
border-spacing: <length> | <length> <length>;•
empty-cells: show | hide;•
caption-side: top | bottom;•

Remarks

These properties apply to both <table> elements (*) and HTML elements displayed as display:
table or display: inline-table

(*) <table> elements are obviously natively styled by UA/browsers as display: table

HTML tables are semantically valid for tabular data. It is not recommended to use tables for layout.
Instead, use CSS.

Examples

table-layout

The table-layout property changes the algorithm that is used for the layout of a table.

Below an example of two tables both set to width: 150px:

The table on the left has table-layout: auto while the one on the right has table-layout: fixed. The
former is wider than the specified width (210px instead of 150px) but the contents fit. The latter
takes the defined width of 150px, regardless if the contents overflow or not.

Value Description

auto
This is the default value. It defines the layout of the table to be determined by the
contents of its' cells.

This value sets the table layout to be determined by the width property provided to
the table. If the content of a cell exceeds this width, the cell will not resize but

fixed

https://riptutorial.com/ 268

https://i.stack.imgur.com/wkJpO.png

Value Description

instead, let the content overflow.

border-collapse

The border-collapse property determines if a tables' borders should be separated or merged.

Below an example of two tables with different values to the border-collapse property:

The table on the left has border-collapse: separate while the one on the right has border-collapse:
collapse.

Value Description

separate
This is the default value. It makes the borders of the table separate from each
other.

collapse
This value sets the borders of the table to merge together, rather than being
distinct.

border-spacing

The border-spacing property determines the spacing between cells. This has no effect unless
border-collapse is set to separate.

Below an example of two tables with different values to the border-spacing property:

The table on the left has border-spacing: 2px (default) while the one on the right has border-
spacing: 8px.

Value Description

<length>
This is the default behavior, though the exact value can vary between
browsers.

<length> This syntax allows specifying separate horizontal and vertical values

https://riptutorial.com/ 269

https://i.stack.imgur.com/awGlj.png
http://i.stack.imgur.com/KlVh0.png

Value Description

<length> respectively.

empty-cells

The empty-cells property determines if cells with no content should be displayed or not. This has
no effect unless border-collapse is set to separate.

Below an example with two tables with different values set to the empty-cells property:

The table on the left has empty-cells: show while the one on the right has empty-cells: hide. The
former does display the empty cells whereas the latter does not.

Value Description

show This is the default value. It shows cells even if they are empty.

hide This value hides a cell altogether if there are no contents in the cell.

More Information:

https://www.w3.org/TR/CSS21/tables.html#empty-cells•
https://developer.mozilla.org/en-US/docs/Web/CSS/empty-cells•
http://codepen.io/SitePoint/pen/yfhtq•
https://css-tricks.com/almanac/properties/e/empty-cells/•

caption-side

The caption-side property determines the vertical positioning of the <caption> element within a
table. This has no effect if such element does not exist.

Below an example with two tables with different values set to the caption-side property:

The table on the left has caption-side: top while the one on the right has caption-side: bottom.

https://riptutorial.com/ 270

http://i.stack.imgur.com/2G54T.png
https://www.w3.org/TR/CSS21/tables.html#empty-cells
https://developer.mozilla.org/en-US/docs/Web/CSS/empty-cells
http://codepen.io/SitePoint/pen/yfhtq
https://css-tricks.com/almanac/properties/e/empty-cells/
http://i.stack.imgur.com/nmLkG.png

Value Description

top This is the default value. It places the caption above the table.

bottom This value places the caption below the table.

Read Tables online: https://riptutorial.com/css/topic/1074/tables

https://riptutorial.com/ 271

https://riptutorial.com/css/topic/1074/tables

Chapter 53: The Box Model

Syntax

box-sizing: parameter;•

Parameters

Parameter Detail

content-box Width and height of the element only includes content area.

padding-box Width and height of the element includes content and padding.

border-box Width and height of the element includes content, padding and border.

initial Sets the box model to its default state.

inherit Inherits the box model of the parent element.

Remarks

About padding-box

This value was only implemented by Firefox and thus should not be used. It was removed in
Firefox version 50.0.

Examples

What is the Box Model?

The Edges

The browser creates a rectangle for each element in the HTML document. The Box Model
describes how the padding, border, and margin are added to the content to create this rectangle.

https://riptutorial.com/ 272

Diagram from CSS2.2 Working Draft

The perimeter of each of the four areas is called an edge. Each edge defines a box.

The innermost rectangle is the content box. The width and height of this depends on the
element's rendered content (text, images and any child elements it may have).

•

Next is the padding box, as defined by the padding property. If there is no padding width
defined, the padding edge is equal to the content edge.

•

Then we have the border box, as defined by the border property. If there is no border width
defined, the border edge is equal to the padding edge.

•

The outermost rectangle is the margin box, as defined by the margin property. If there is no
margin width defined, the margin edge is equal to the border edge.

•

Example

div {
 border: 5px solid red;
 margin: 50px;
 padding: 20px;
}

This CSS styles all div elements to have a top, right, bottom and left border of 5px in width; a top,
right, bottom and left margin of 50px; and a top, right, bottom, and left padding of 20px. Ignoring
content, our generated box will look like this:

https://riptutorial.com/ 273

https://www.w3.org/TR/CSS22/box.html#mpb-examples
http://www.riptutorial.com/css/topic/1255/padding
http://www.riptutorial.com/css/topic/2160/border
http://www.riptutorial.com/css/topic/305/margins

Screenshot of Google Chrome's Element Styles panel

As there is no content, the content region (the blue box in the middle) has no height or width
(0px by 0px).

•

The padding box by default is the same size as the content box, plus the 20px width on all
four edges we're defining above with the padding property (40px by 40px).

•

The border box is the same size as the padding box, plus the 5px width we're defining above
with the border property (50px by 50px).

•

Finally the margin box is the same size as the border box, plus the 50px width we're defining
above with the margin property (giving our element a total size of 150px by 150px).

•

Now lets give our element a sibling with the same style. The browser looks at the Box Model of
both elements to work out where in relation to the previous element's content the new element
should be positioned:

The content of each of element is separated by a 150px gap, but the two elements' boxes touch
each other.

If we then modify our first element to have no right margin, the right margin edge would be in the
same position as the right border edge, and our two elements would now look like this:

box-sizing

The default box model (content-box) can be counter-intuitive, since the width / height for an

https://riptutorial.com/ 274

element will not represent its actual width or height on screen as soon as you start adding padding
and border styles to the element.

The following example demonstrates this potential issue with content-box:

textarea {
 width: 100%;
 padding: 3px;
 box-sizing: content-box; /* default value */
}

Since the padding will be added to the width of the textarea, the resulting element is a textarea
that is wider than 100%.

Fortunately, CSS allows us to change the box model with the box-sizing property for an element.
There are three different values for the property available:

content-box: The common box model - width and height only includes the content, not the
padding or border

•

padding-box: Width and height includes the content and the padding, but not the border•

border-box: Width and height includes the content, the padding as well as the border•

To solve the textarea problem above, you could just change the box-sizing property to padding-box
or border-box. border-box is most commonly used.

textarea {
 width: 100%;
 padding: 3px;
 box-sizing: border-box;
}

https://riptutorial.com/ 275

https://i.stack.imgur.com/1ZiRc.png

To apply a specific box model to every element on the page, use the following snippet:

html {
 box-sizing: border-box;
}

*, *:before, *:after {
 box-sizing: inherit;
}

In this coding box-sizing:border-box; is not directly applied to *, so you can easily overwrite this
property on individual elements.

Read The Box Model online: https://riptutorial.com/css/topic/646/the-box-model

https://riptutorial.com/ 276

https://riptutorial.com/css/topic/646/the-box-model

Chapter 54: Transitions

Syntax

transition: [transition-property] [transition-duration] [transition-timing-function] [transition-
delay];

•

Parameters

Parameter Details

transition-
property

The specific CSS property whose value change needs to be transitioned (or)
all, if all the transitionable properties need to be transitioned.

transition-
duration

The duration (or period) in seconds (s) or milliseconds (ms) over which the
transition must take place.

transition-
timing-
function

A function that describes how the intermediate values during the transition
are calculated. Commonly used values are ease, ease-in, ease-out, ease-in-
out, linear, cubic-bezier(), steps(). More information about the various
timing functions can be found in the W3C specs.

transition-
delay

The amount of time that must have elapsed before the transition can start.
Can be specified in seconds (s) or milliseconds (ms)

Remarks

Some older browsers support only vendor-prefixed transition properties:

-webkit: Chrome 25-, Safari 6-, Safari & Chrome for iOS 6.1-, Android 4.3- Browser,
Blackberry Browser 7-, UC Browser 9.9- for Android.

•

-moz: Firefox 15-.•
-o: Opera 11.5-, Opera Mobile 12-.•

Example:

-webkit-transition: all 1s;
-moz-transition: all 1s;
-o-transition: all 1s;
transition: all 1s;

Examples

Transition shorthand

https://riptutorial.com/ 277

https://www.w3.org/TR/css3-transitions/#animatable-properties
https://www.w3.org/TR/css3-transitions/#transition-timing-function
http://caniuse.com/#search=transitions

CSS

div{
 width: 150px;
 height:150px;
 background-color: red;
 transition: background-color 1s;
}
div:hover{
 background-color: green;
}

HTML

<div></div>

This example will change the background color when the div is hovered the background-color
change will last 1 second.

Transition (longhand)

CSS

div {
 height: 100px;
 width: 100px;
 border: 1px solid;
 transition-property: height, width;
 transition-duration: 1s, 500ms;
 transition-timing-function: linear;
 transition-delay: 0s, 1s;
}
div:hover {
 height: 200px;
 width: 200px;
}

HTML

<div></div>

transition-property: Specifies the CSS properties the transition effect is for. In this case, the
div will expand both horizontally and vertically when hovered.

•

transition-duration: Specifies the length of time a transition takes to complete. In the above
example, the height and width transitions will take 1 second and 500 milliseconds
respectively.

•

transition-timing-function: Specifies the speed curve of the transition effect. A linear value
indicates the transition will have the same speed from start to finish.

•

https://riptutorial.com/ 278

transition-delay: Specifies the amount of time needed to wait before the transition effect
starts. In this case, the height will start transitioning immediately, whereas the width will wait
1 second.

•

cubic-bezier

The cubic-bezier function is a transition timing function which is often used for custom and smooth
transitions.

transition-timing-function: cubic-bezier(0.1, 0.7, 1.0, 0.1);

The function takes four parameters:

cubic-bezier(P1_x, P1_y, P2_x, P2_y)

These parameters will be mapped to points which are part of a Bézier curve:

https://riptutorial.com/ 279

http://i.stack.imgur.com/4jlAK.png
https://en.wikipedia.org/wiki/B%C3%A9zier_curve#Cubic_B.C3.A9zier_curves

For CSS Bézier Curves, P0 and P3 are always in the same spot. P0 is at (0,0) and P3 is at (1,1),
which menas that the parameters passed to the cubic-bezier function can only be between 0 and
1.

If you pass parameters which aren't in this interval the function will default to a linear transition.

Since cubic-bezier is the most flexible transition in CSS, you can translate all other transition
timing function to cubic-bezier functions:

linear: cubic-bezier(0,0,1,1)

ease-in: cubic-bezier(0.42, 0.0, 1.0, 1.0)

ease-out: cubic-bezier(0.0, 0.0, 0.58, 1.0)

ease-in-out: cubic-bezier(0.42, 0.0, 0.58, 1.0)

Read Transitions online: https://riptutorial.com/css/topic/751/transitions

https://riptutorial.com/ 280

http://i.stack.imgur.com/FabHY.png
https://riptutorial.com/css/topic/751/transitions

Chapter 55: Typography

Syntax

font: [font-style] [font-variant] [font-weight] font-size [/line-height] font-family;•
font-style: font-style•
font-variant: font-variant•
font-weight: font-weight;•
font-size: font-size;•
line-height: line-height;•
font-family: font-family;•
color: color;•
quotes: none|string|initial|inherit;•
font-stretch: font-stretch;•
text-align: text-align;•
text-indent: length|initial|inherit;•
text-overflow: clip|ellipsis|string|initial|inherit;•
text-transform: none|capitalize|uppercase|lowercase|initial|inherit;•
text-shadow: h-shadow v-shadow blur-radius color|none|initial|inherit;•
font-size-adjust: number|none|initial|inherit;•
font-stretch: ultra-condensed|extra-condensed|condensed|semi-condensed|normal|semi-
expanded|expanded|extra-expanded|ultra-expanded|initial|inherit;

•

hyphens: none | manual | auto;•
tab-size: number|length|initial|inherit;•
letter-spacing: normal|length|initial|inherit;•
word-spacing: normal|length|initial|inherit;•

Parameters

Parameter Details

font-style italics or oblique

font-variant normal or small-caps

font-weight normal, bold or numeric from 100 to 900.

font-size The font size given in %, px, em, or any other valid CSS measurement

line-height The line height given in %, px, em, or any other valid CSS measurement

font-family This is for defining the family's name.

color Any valid CSS color representation, like red, #00FF00, hsl(240, 100%, 50%) etc.

Whether or not to use a confenced or expanded face from font. Valid values font-stretch

https://riptutorial.com/ 281

http://www.riptutorial.com/css/topic/644/colors

Parameter Details

are normal, ultra-condensed, extra-condensed, condensed, semi-condensed, semi-
expanded, expanded, extra-expanded or ultra-expanded

text-align start, end, left, right, center, justify, match-parent

text-
decoration

none, underline, overline, line-through, initial, inherit;

Remarks

The text-shadow property is not supported by versions of Internet Explorer less than 10.•

Examples

Font Size

HTML:

<div id="element-one">Hello I am some text.</div>
<div id="element-two">Hello I am some smaller text.</div>

CSS:

#element-one {
 font-size: 30px;
}

#element-two {
 font-size: 10px;
}

The text inside #element-one will be 30px in size, while the text in #element-two will be 10px in size.

The Font Shorthand

With the syntax:

element {
 font: [font-style] [font-variant] [font-weight] [font-size/line-height] [font-family];
}

You can have all your font-related styles in one declaration with the font shorthand. Simply use
the font property, and put your values in the correct order.

For example, to make all p elements bold with a font size of 20px and using Arial as the font family
typically you would code it as follows:

https://riptutorial.com/ 282

p {
 font-weight: bold;
 font-size: 20px;
 font-family: Arial, sans-serif;
}

However with the font shorthand it can be condensed as follows:

p {
 font: bold 20px Arial, sans-serif;
}

Note: that since font-style, font-variant, font-weight and line-height are optional, the three of
them are skipped in this example. It is important to note that using the shortcut resets the other
attributes not given. Another important point is that the two necessary attributes for the font
shortcut to work are font-size and font-family. If they are not both included the shortcut is ignored.

Initial value for each of the properties:

font-style: normal;•
font-variant: normal;•
font-weight: normal;•
font-stretch: normal;•
font-size: medium;•
line-height: normal;•
font-family – depends on user agent•

Font Stacks

font-family: 'Segoe UI', Tahoma, sans-serif;

The browser will attempt to apply the font face "Segoe UI" to the characters within the elements
targeted by the above property. If this font is not available, or the font does not contain a glyph for
the required character, the browser will fall back to Tahoma, and, if necessary, any sans-serif font
on the user's computer. Note that any font names with more than one word such as "Segoe UI"
need to have single or double quotes around them.

font-family: Consolas, 'Courier New', monospace;

The browser will attempt to apply the font face "Consolas" to the characters within the elements
targeted by the above property. If this font is not available, or the font does not contain a glyph for
the required character, the browser will fall back to "Courier New," and, if necessary, any
monospace font on the user's computer.

Letter Spacing

h2 {
 /* adds a 1px space horizontally between each letter;
 also known as tracking */
 letter-spacing: 1px;

https://riptutorial.com/ 283

}

The letter-spacing property is used to specify the space between the characters in a text.

! letter-spacing also supports negative values:

p {
 letter-spacing: -1px;
}

Resources: https://developer.mozilla.org/en-US/docs/Web/CSS/letter-spacing

Text Transform

The text-transform property allows you to change the capitalization of text. Valid values are:
uppercase, capitalize, lowercase, initial, inherit, and none

CSS:

.example1 {
 text-transform: uppercase;
}
.example2 {
 text-transform: capitalize;
}
.example3 {
 text-transform: lowercase;
}

HTML

<p class="example1">
 all letters in uppercase <!-- "ALL LETTERS IN UPPERCASE" -->
</p>
<p class="example2">
 all letters in capitalize <!-- "All Letters In Capitalize (Sentence Case)" -->
</p>
<p class="example3">
 all letters in lowercase <!-- "all letters in lowercase" -->
</p>

Text Indent

p {
 text-indent: 50px;
}

The text-indent property specifies how much horizontal space text should be moved before the
beginning of the first line of the text content of an element.

Resources:

https://riptutorial.com/ 284

https://developer.mozilla.org/en-US/docs/Web/CSS/letter-spacing

Indenting only the first line of text in a paragraph?•
https://www.w3.org/TR/CSS21/text.html#propdef-text-indent•
https://developer.mozilla.org/en-US/docs/Web/CSS/text-indent•

Text Decoration

The text-decoration property is used to set or remove decorations from text.

h1 { text-decoration: none; }
h2 { text-decoration: overline; }
h3 { text-decoration: line-through; }
h4 { text-decoration: underline; }

text-decoration can be used in combination with text-decoration-style and text-decoration-color as
a shorthand property:

.title { text-decoration: underline dotted blue; }

This is a shorthand version of

.title {
 text-decoration-style: dotted;
 text-decoration-line: underline;
 text-decoration-color: blue;
}

It should be noted that the following properties are only supported in Firefox

text-decoration-color•
text-decoration-line•
text-decoration-style•
text-decoration-skip•

Text Overflow

The text-overflow property deals with how overflowed content should be signaled to users. In this
example, the ellipsis represents clipped text.

.text {
 overflow: hidden;
 text-overflow: ellipsis;
}

Unfortunately, text-overflow: ellipsis only works on a single line of text. There is no way to
support ellipsis on the last line in standard CSS, but it can be achieved with non-standard webkit-
only implementation of flexboxes.

.giveMeEllipsis {
 overflow: hidden;
 text-overflow: ellipsis;

https://riptutorial.com/ 285

http://stackoverflow.com/questions/5856952/indenting-only-the-first-line-of-text-in-a-paragraph
https://www.w3.org/TR/CSS21/text.html#propdef-text-indent
https://developer.mozilla.org/en-US/docs/Web/CSS/text-indent

 display: -webkit-box;
 -webkit-box-orient: vertical;
 -webkit-line-clamp: N; /* number of lines to show */
 line-height: X; /* fallback */
 max-height: X*N; /* fallback */
}

Example (open in Chrome or Safari):

http://jsfiddle.net/csYjC/1131/

Resources:

https://www.w3.org/TR/2012/WD-css3-ui-20120117/#text-overflow0

Word Spacing

The word-spacing property specifies the spacing behavior between tags and words.

Possible values

a positive or negative length (using em px vh cm etc.) or percentage (using %)•
the keyword normal uses the font's default word spacing•
the keyword inherit takes the value from the parent element•

CSS

.normal { word-spacing: normal; }

.narrow { word-spacing: -3px; }

.extensive { word-spacing: 10px; }

HTML

<p>
 This is an example, showing the effect of "word-spacing".

 This is an example, showing the effect of "word-spacing".

 This is an example, showing the effect of "word-spacing".

</p>

Online-Demo

Try it yourself

Further reading:

word-spacing – MDN•
word-spacing – w3.org•

Text Direction

div {

https://riptutorial.com/ 286

http://jsfiddle.net/csYjC/1131/
https://www.w3.org/TR/2012/WD-css3-ui-20120117/#text-overflow0
https://jsfiddle.net/91742Lxt/
https://developer.mozilla.org/de/docs/Web/CSS/word-spacing
https://www.w3.org/wiki/CSS/Properties/word-spacing

 direction: ltr; /* Default, text read read from left-to-right */
}
.ex {
 direction: rtl; /* text read from right-to-left */
}
.horizontal-tb {
 writing-mode: horizontal-tb; /* Default, text read from left-to-right and top-to-bottom.
*/
}
.vertical-rtl {
 writing-mode: vertical-rl; /* text read from right-to-left and top-to-bottom */
}
.vertical-ltr {
 writing-mode: vertical-rl; /* text read from left-to-right and top to bottom */
}

The direction property is used to change the horizontal text direction of an element.

Syntax: direction: ltr | rtl | initial | inherit;

The writing-mode property changes the alignment of text so it can be read from top-to-bottom or
from left-to-right, depending on the language.

Syntax: direction: horizontal-tb | vertical-rl | vertical-lr;

Font Variant

Attributes:

normal

Default attribute of fonts.

small-caps

Sets every letter to uppercase, but makes the lowercase letters(from original text) smaller in size
than the letters that originally uppercase.

CSS:

.smallcaps{
 font-variant: small-caps;
}

HTML:

<p class="smallcaps">
 Documentation about CSS Fonts

 aNd ExAmpLe
</p>

https://riptutorial.com/ 287

OUPUT:

Note: The font-variant property is a shorthand for the properties: font-variant-caps, font-variant-
numeric, font-variant-alternates, font-variant-ligatures, and font-variant-east-asian.

Quotes

The quotes property is used to customize the opening and closing quotation marks of the <q> tag.

q {
 quotes: "«" "»";
}

Text Shadow

To add shadows to text, use the text-shadow property. The syntax is as follows:

text-shadow: horizontal-offset vertical-offset blur color;

Shadow without blur radius

h1 {
 text-shadow: 2px 2px #0000FF;
}

This creates a blue shadow effect around a heading

Shadow with blur radius

To add a blur effect, add an option blur radius argument

h1 {
 text-shadow: 2px 2px 10px #0000FF;
}

Multiple Shadows

To give an element multiple shadows, separate them with commas

h1 {
 text-shadow: 0 0 3px #FF0000, 0 0 5px #0000FF;
}

Read Typography online: https://riptutorial.com/css/topic/427/typography

https://riptutorial.com/ 288

https://i.stack.imgur.com/HVJq6.png
https://riptutorial.com/css/topic/427/typography

Chapter 56: Vertical Centering

Remarks

This is used when the element's dimensions (width and height) are not known or dynamic.

Prefer to use Flexbox over all other options as it is optimized for user interface design.

Examples

Centering with display: table

HTML:

<div class="wrapper">
 <div class="outer">
 <div class="inner">
 centered
 </div>
 </div>
</div>

CSS:

.wrapper {
 height: 600px;
 text-align: center;
}
.outer {
 display: table;
 height: 100%;
 width: 100%;
}
.outer .inner {
 display: table-cell;
 text-align: center;
 vertical-align: middle;
}

Centering with Transform

HTML:

<div class="wrapper">
 <div class="centered">
 centered
 </div>
</div>

CSS:

https://riptutorial.com/ 289

.wrapper {
 position: relative;
 height: 600px;
}
.centered {
 position: absolute;
 z-index: 999;
 transform: translate(-50%, -50%);
 top: 50%;
 left: 50%;
}

Centering with Flexbox

HTML:

<div class="container">
 <div class="child"></div>
</div>

CSS:

.container {
 height: 500px;
 width: 500px;
 display: flex; // Use Flexbox
 align-items: center; // This centers children vertically in the parent.
 justify-content: center; // This centers children horizontally.
 background: white;
}

.child {
 width: 100px;
 height: 100px;
 background: blue;
}

Centering Text with Line Height

HTML:

<div class="container">
 vertically centered
</div>

CSS:

.container{
 height: 50px; /* set height */
 line-height: 50px; /* set line-height equal to the height */
 vertical-align: middle; /* works without this rule, but it is good having it explicitly
set */
}

https://riptutorial.com/ 290

Note: This method will only vertically center a single line of text. It will not center block elements
correctly and if the text breaks onto a new line, you will have two very tall lines of text.

Centering with Position: absolute

HTML:

<div class="wrapper">
 <img src="http://cdn.sstatic.net/Sites/stackoverflow/company/img/logos/so/so-
icon.png?v=c78bd457575a">
</div>

CSS:

.wrapper{
 position:relative;
 height: 600px;
}
.wrapper img {
 position: absolute;
 top: 0;
 left: 0;
 right: 0;
 bottom: 0;
 margin: auto;
}

If you want to center other then images, then you must give height and width to that element.

HTML:

<div class="wrapper">
 <div class="child">
 make me center
 </div>
</div>

CSS:

.wrapper{
 position:relative;
 height: 600px;
}
.wrapper .child {
 position: absolute;
 top: 0;
 left: 0;
 right: 0;
 bottom: 0;
 margin: auto;
 width: 200px;
 height: 30px;
 border: 1px solid #f00;
}

https://riptutorial.com/ 291

Centering with pseudo element

HTML:

<div class="wrapper">
 <div class="content"></div>
</div>

CSS:

.wrapper{
 min-height: 600px;
}

.wrapper:before{
 content: "";
 display: inline-block;
 height: 100%;
 vertical-align: middle;
}

.content {
 display: inline-block;
 height: 80px;
 vertical-align: middle;
}

This method is best used in cases where you have a varied-height .content centered inside
.wrapper; and you want .wrapper's height to expand when .content's height exceed .wrapper's min-
height.

Read Vertical Centering online: https://riptutorial.com/css/topic/5070/vertical-centering

https://riptutorial.com/ 292

https://riptutorial.com/css/topic/5070/vertical-centering

Credits

S.
No

Chapters Contributors

1
Getting started with
CSS

adamboro, animuson, Ashwin Ramaswami, awe, Boysenb3rry,
Chris, Community, csx.cc, darrylyeo, FelipeAls, Gabriel R.,
Garconis, Gerardas, GoatsWearHats, G-Wiz, Harish Gyanani,
Heri Hehe Setiawan, J Atkin, Jmh2013, joe_young, Jose Gomez
, Just a student, Lambda Ninja, Marjorie Pickard, Nathan Arthur,
patelarpan, RamenChef, Rocket Risa, Saroj Sasmal,
ScientiaEtVeritas, selvassn, Sverri M. Olsen, Teo Dragovic,
Todd, TylerH, Vivek Ghaisas, Xinyang Li, ZaneDickens

2 2D Transforms
Charlie H, Christiaan Maks, Harry, Hors Sujet, John Slegers,
Luke Taylor, Madalina Taina, mnoronha, PaMaDo, Praveen
Kumar, RamenChef, web-tiki, zer00ne

3 3D Transforms
Harry, Luka Kerr, Madalina Taina, mnoronha, Mr. Meeseeks,
Nhan, RamenChef, web-tiki

4 Animations
Aeolingamenfel, apaul, Dex Star, Jasmin Solanki, Nathan Arthur
, RamenChef, Richard Hamilton, TylerH

5 Backgrounds

4444, Ahmad Alfy, animuson, Asim K T, Ben Rhys-Lewis, Boris,
CalvT, cdm, Charlie H, CocoaBean, Dan Devine, Dan Eastwell,
Daniel G. Blázquez, Daniel Stradowski, Darthstroke, designcise,
Devid Farinelli, dippas, fcalderan, FelipeAls, Goose, Horst
Jahns, Hynes, Jack, Jacob Gray, James Taylor, John Slegers,
Jon Chan, Jonathan Zúñiga, Kevin Montrose, Louis St-Amour,
Madalina Taina, Maximillian Laumeister, Michael Moriarty, Mr.
Alien, mtb, Nate, Nathan Arthur, Nhan, Persijn, Praveen Kumar,
RamenChef, Richard Hamilton, ScientiaEtVeritas, Sergey
Denisov, Shaggy, Sourav Ghosh, Stewartside, Stratboy,
think123, Timothy, Trevor Clarke, TylerH, Zac, Zeta, Zze

6
Block Formatting
Contexts

Madalina Taina, Milan Laslop, RamenChef

7 Border
andreas, Cassidy Williams, doctorsherlock, FelipeAls,
Gnietschow, Harry, jaredsk, Madalina Taina, Nobal Mohan,
RamenChef, ScientiaEtVeritas, Trevor Clarke

8 box-shadow Hristo, Madalina Taina, RamenChef

9
Browser Support &
Prefixes

Andrew, animuson, Braiam, Nhan, Obsidian, RamenChef,
ScientiaEtVeritas, Shaggy, TylerH

https://riptutorial.com/ 293

https://riptutorial.com/contributor/3772847/adamboro
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/1950269/ashwin-ramaswami
https://riptutorial.com/contributor/109392/awe
https://riptutorial.com/contributor/6049524/boysenb3rry
https://riptutorial.com/contributor/2030321/chris
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5650428/csx-cc
https://riptutorial.com/contributor/5545315/darrylyeo
https://riptutorial.com/contributor/137626/felipeals
https://riptutorial.com/contributor/170091/gabriel-r-
https://riptutorial.com/contributor/1887218/garconis
https://riptutorial.com/contributor/2948417/gerardas
https://riptutorial.com/contributor/5299938/goatswearhats
https://riptutorial.com/contributor/29805/g-wiz
https://riptutorial.com/contributor/1495703/harish-gyanani
https://riptutorial.com/contributor/670855/heri-hehe-setiawan
https://riptutorial.com/contributor/4683264/j-atkin
https://riptutorial.com/contributor/1284810/jmh2013
https://riptutorial.com/contributor/4206206/joe-young
https://riptutorial.com/contributor/6530221/jose-gomez
https://riptutorial.com/contributor/962603/just-a-student
https://riptutorial.com/contributor/2397327/lambda-ninja
https://riptutorial.com/contributor/7855318/marjorie-pickard
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/3710481/patelarpan
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5220880/rocket-risa
https://riptutorial.com/contributor/5293076/saroj-sasmal
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/5138044/selvassn
https://riptutorial.com/contributor/1300892/sverri-m--olsen
https://riptutorial.com/contributor/2382115/teo-dragovic
https://riptutorial.com/contributor/7026544/todd
https://riptutorial.com/contributor/2756409/tylerh
https://riptutorial.com/contributor/2141058/vivek-ghaisas
https://riptutorial.com/contributor/2226315/xinyang-li
https://riptutorial.com/contributor/3660706/zanedickens
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/3710120/christiaan-maks
https://riptutorial.com/contributor/2606013/harry
https://riptutorial.com/contributor/2226755/hors-sujet
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/4414003/luke-taylor
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/3844885/pamado
https://riptutorial.com/contributor/462627/praveen-kumar
https://riptutorial.com/contributor/462627/praveen-kumar
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1811992/web-tiki
https://riptutorial.com/contributor/2813224/zer00ne
https://riptutorial.com/contributor/2606013/harry
https://riptutorial.com/contributor/6523193/luka-kerr
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/1270656/mr--meeseeks
https://riptutorial.com/contributor/2571493/nhan
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1811992/web-tiki
https://riptutorial.com/contributor/3681236/aeolingamenfel
https://riptutorial.com/contributor/1947286/apaul
https://riptutorial.com/contributor/3562241/dex-star
https://riptutorial.com/contributor/6493825/jasmin-solanki
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/2756409/tylerh
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/497828/ahmad-alfy
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/4015856/asim-k-t
https://riptutorial.com/contributor/4509121/ben-rhys-lewis
https://riptutorial.com/contributor/6442082/boris
https://riptutorial.com/contributor/1873567/calvt-
https://riptutorial.com/contributor/1873567/calvt-
https://riptutorial.com/contributor/4663542/cdm
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/1165357/cocoabean
https://riptutorial.com/contributor/2131723/dan-devine
https://riptutorial.com/contributor/1408316/dan-eastwell
https://riptutorial.com/contributor/321480/daniel-g--blazquez
https://riptutorial.com/contributor/5449709/daniel-stradowski
https://riptutorial.com/contributor/3241847/darthstroke
https://riptutorial.com/contributor/2382283/designcise
https://riptutorial.com/contributor/4695325/devid-farinelli
https://riptutorial.com/contributor/3448527/dippas
https://riptutorial.com/contributor/1098851/fcalderan
https://riptutorial.com/contributor/137626/felipeals
https://riptutorial.com/contributor/3774582/goose
https://riptutorial.com/contributor/2661301/horst-jahns
https://riptutorial.com/contributor/2661301/horst-jahns
https://riptutorial.com/contributor/2640230/hynes
https://riptutorial.com/contributor/1585362/jack
https://riptutorial.com/contributor/3285730/jacob-gray
https://riptutorial.com/contributor/1944335/james-taylor
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1043674/jon-chan
https://riptutorial.com/contributor/1560233/jonathan-zuniga
https://riptutorial.com/contributor/80572/kevin-montrose
https://riptutorial.com/contributor/128579/louis-st-amour
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/2234742/maximillian-laumeister
https://riptutorial.com/contributor/4515471/michael-moriarty
https://riptutorial.com/contributor/1542290/mr--alien
https://riptutorial.com/contributor/1542290/mr--alien
https://riptutorial.com/contributor/5520058/mtb
https://riptutorial.com/contributor/420006/nate
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/2571493/nhan
https://riptutorial.com/contributor/3999748/persijn
https://riptutorial.com/contributor/462627/praveen-kumar
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/2570353/sergey-denisov
https://riptutorial.com/contributor/2570353/sergey-denisov
https://riptutorial.com/contributor/4768433/shaggy
https://riptutorial.com/contributor/4040525/sourav-ghosh
https://riptutorial.com/contributor/2889988/stewartside
https://riptutorial.com/contributor/551357/stratboy
https://riptutorial.com/contributor/1136709/think123
https://riptutorial.com/contributor/4497805/timothy
https://riptutorial.com/contributor/3998484/trevor-clarke
https://riptutorial.com/contributor/2756409/tylerh
https://riptutorial.com/contributor/2096845/zac
https://riptutorial.com/contributor/1139697/zeta
https://riptutorial.com/contributor/3509591/zze
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/7164302/milan-laslop
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4952806/andreas
https://riptutorial.com/contributor/1950503/cassidy-williams
https://riptutorial.com/contributor/5128879/doctorsherlock
https://riptutorial.com/contributor/137626/felipeals
https://riptutorial.com/contributor/1339365/gnietschow
https://riptutorial.com/contributor/2606013/harry
https://riptutorial.com/contributor/2378918/jaredsk
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/1004972/nobal-mohan
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/3998484/trevor-clarke
https://riptutorial.com/contributor/196921/hristo
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5410688/andrew
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/792066/braiam
https://riptutorial.com/contributor/2571493/nhan
https://riptutorial.com/contributor/2120261/obsidian
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/4768433/shaggy
https://riptutorial.com/contributor/2756409/tylerh

10
Cascading and
Specificity

amflare, Arjan Einbu, brandaemon, DarkAjax, dippas, dmkerr,
geeksal, Grant Palin, G-Wiz, James Donnelly, jehna1, John
Slegers, kingcobra1986, Matas Vaitkevicius, Nathan Arthur,
Nhan, Ortomala Lokni, RamenChef, ScientiaEtVeritas, Sunnyok
, Ze Rubeus

11 Centering

abaracedo, Alex Morales, Alohci, andreas, animuson, apaul,
Christiaan Maks, Daniel Käfer, Devid Farinelli, Diego V, dippas,
Eliran Malka, Emanuele Parisio, Euan Williams, F. Müller,
Farzad YZ, Felix A J, geek1011, insertusernamehere,
JedaiCoder, jehna1, JHS, John Slegers, Jonathan Argentiero,
Kilian Stinson, Kyle Ratliff, Lambda Ninja, Lucia Bentivoglio,
Luke Taylor, Madalina Taina, maho, Maxouhell, Michael_B,
Mifeet, Mod Proxy, Mohammad Usman, Nathan Arthur, Nhan,
o.v., Ortomala Lokni, paaacman, Paul Kozlovitch, Praveen
Kumar, Sandeep Tuniki, ScientiaEtVeritas, Sergej, Siavas,
smonff, Someone, Stewartside, Sunnyok, Taylor, TylerH, web-
tiki, Ze Rubeus, zeel

12
Clipping and
Masking

Andre Lopes, Harry, RamenChef, ScientiaEtVeritas, web-tiki

13 Colors

andreas, animuson, Arjan Einbu, Brett DeWoody, Community,
cuervoo, darrylyeo, designcise, H. Pauwelyn, Jasmin Solanki,
John Slegers, Kuhan, Marc, Michael Moriarty, Miro, Nathan
Arthur, niyasc, RamenChef, Richard Hamilton, ScientiaEtVeritas
, SeinopSys, Stewartside, user007, Wolfgang, X-27

14 Columns Brett DeWoody, Madalina Taina, RamenChef

15 Comments animuson, bdkopen, coderfin, Madalina Taina, Nick

16 Counters Harry, RamenChef

17 CSS design patterns John Slegers

18 CSS Image Sprites
Elegant.Scripting, Jmh2013, RamenChef, Ted Goas, Ulrich
Schwarz

19
CSS Object Model
(CSSOM)

Alohci, animuson, feeela, Paul Sweatte, RamenChef, rishabh
dev

20 Cursor Styling cone56, Madalina Taina, ScientiaEtVeritas, Squazz

21
Custom Properties
(Variables)

animuson, Brett DeWoody, Community, Daniel Käfer, Muthu
Kumaran, Obsidian, RamenChef, RedRiderX, TylerH

22 Feature Queries Andrew Myers, RamenChef

23 Filter Property Jeffery Tang, Nathan, RamenChef

https://riptutorial.com/ 294

https://riptutorial.com/contributor/5937428/amflare
https://riptutorial.com/contributor/19594/arjan-einbu
https://riptutorial.com/contributor/4561047/brandaemon
https://riptutorial.com/contributor/1046057/darkajax
https://riptutorial.com/contributor/3448527/dippas
https://riptutorial.com/contributor/1316470/dmkerr
https://riptutorial.com/contributor/3212574/geeksal
https://riptutorial.com/contributor/68763/grant-palin
https://riptutorial.com/contributor/29805/g-wiz
https://riptutorial.com/contributor/1317805/james-donnelly
https://riptutorial.com/contributor/2697279/jehna1
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/3942863/kingcobra1986
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/2571493/nhan
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/4290193/sunnyok
https://riptutorial.com/contributor/4232386/ze-rubeus
https://riptutorial.com/contributor/2993458/abaracedo
https://riptutorial.com/contributor/135233/alex-morales
https://riptutorial.com/contributor/42585/alohci
https://riptutorial.com/contributor/4952806/andreas
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/1947286/apaul
https://riptutorial.com/contributor/3710120/christiaan-maks
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/4695325/devid-farinelli
https://riptutorial.com/contributor/1385678/diego-v
https://riptutorial.com/contributor/3448527/dippas
https://riptutorial.com/contributor/547020/eliran-malka
https://riptutorial.com/contributor/2550659/emanuele-parisio
https://riptutorial.com/contributor/4912942/euan-williams
https://riptutorial.com/contributor/1294283/f--muller
https://riptutorial.com/contributor/2784512/farzad-yz
https://riptutorial.com/contributor/1155876/felix-a-j
https://riptutorial.com/contributor/5139282/geek1011
https://riptutorial.com/contributor/1456376/insertusernamehere
https://riptutorial.com/contributor/5826535/jedaicoder
https://riptutorial.com/contributor/2697279/jehna1
https://riptutorial.com/contributor/3538313/jhs
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1679414/jonathan-argentiero
https://riptutorial.com/contributor/2345972/kilian-stinson
https://riptutorial.com/contributor/4446898/kyle-ratliff
https://riptutorial.com/contributor/2397327/lambda-ninja
https://riptutorial.com/contributor/2042994/lucia-bentivoglio
https://riptutorial.com/contributor/4414003/luke-taylor
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/7763143/maho
https://riptutorial.com/contributor/4022806/maxouhell
https://riptutorial.com/contributor/3597276/michael-b
https://riptutorial.com/contributor/2032064/mifeet
https://riptutorial.com/contributor/6571865/mod-proxy
https://riptutorial.com/contributor/5933656/mohammad-usman
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/2571493/nhan
https://riptutorial.com/contributor/1081234/o-v-
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/2777963/paaacman
https://riptutorial.com/contributor/1923755/paul-kozlovitch
https://riptutorial.com/contributor/462627/praveen-kumar
https://riptutorial.com/contributor/462627/praveen-kumar
https://riptutorial.com/contributor/4937439/sandeep-tuniki
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/2788742/sergej
https://riptutorial.com/contributor/5838198/siavas
https://riptutorial.com/contributor/954777/smonff
https://riptutorial.com/contributor/1410735/someone
https://riptutorial.com/contributor/2889988/stewartside
https://riptutorial.com/contributor/4290193/sunnyok
https://riptutorial.com/contributor/3311859/taylor
https://riptutorial.com/contributor/2756409/tylerh
https://riptutorial.com/contributor/1811992/web-tiki
https://riptutorial.com/contributor/1811992/web-tiki
https://riptutorial.com/contributor/4232386/ze-rubeus
https://riptutorial.com/contributor/765036/zeel
https://riptutorial.com/contributor/2816342/andre-lopes
https://riptutorial.com/contributor/2606013/harry
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/1811992/web-tiki
https://riptutorial.com/contributor/4952806/andreas
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/19594/arjan-einbu
https://riptutorial.com/contributor/438581/brett-dewoody
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/4230661/cuervoo
https://riptutorial.com/contributor/5545315/darrylyeo
https://riptutorial.com/contributor/2382283/designcise
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/6493825/jasmin-solanki
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/3214177/kuhan
https://riptutorial.com/contributor/4382892/marc
https://riptutorial.com/contributor/4515471/michael-moriarty
https://riptutorial.com/contributor/559079/miro
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/1520248/niyasc
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/1344955/seinopsys
https://riptutorial.com/contributor/2889988/stewartside
https://riptutorial.com/contributor/2642959/user007
https://riptutorial.com/contributor/1979340/wolfgang
https://riptutorial.com/contributor/1305794/x-27
https://riptutorial.com/contributor/438581/brett-dewoody
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/7214959/bdkopen
https://riptutorial.com/contributor/2344083/coderfin
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/3210868/nick
https://riptutorial.com/contributor/2606013/harry
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/4497067/elegant-scripting
https://riptutorial.com/contributor/1284810/jmh2013
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/734487/ted-goas
https://riptutorial.com/contributor/505649/ulrich-schwarz
https://riptutorial.com/contributor/505649/ulrich-schwarz
https://riptutorial.com/contributor/42585/alohci
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/341201/feeela
https://riptutorial.com/contributor/1113772/paul-sweatte
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4114117/rishabh-dev
https://riptutorial.com/contributor/4114117/rishabh-dev
https://riptutorial.com/contributor/2229579/cone56
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/1955317/squazz
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/438581/brett-dewoody
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/615746/muthu-kumaran
https://riptutorial.com/contributor/615746/muthu-kumaran
https://riptutorial.com/contributor/2120261/obsidian
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/982259/redriderx
https://riptutorial.com/contributor/2756409/tylerh
https://riptutorial.com/contributor/5764553/andrew-myers
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6454135/jeffery-tang
https://riptutorial.com/contributor/1234583/nathan
https://riptutorial.com/contributor/6392939/ramenchef

24
Flexible Box Layout
(Flexbox)

Ahmad Alfy, Asim K T, FelipeAls, fzzylogic, James Donnelly, Jef
, Lambda Ninja, Marc-Antoine Leclerc, Nathan Arthur, Nhan, Ori
Marash, RamenChef, Randy, Squazz, takeradi, Ted Goas,
Timothy Morris, TylerH

25 Floats
demonofthemist, FelipeAls, Madalina Taina, Nathan Arthur,
RamenChef, vishak

26 Fragmentation animuson, dodopok, Madalina Taina, Milan Laslop, RamenChef

27 Functions
animuson, Brett DeWoody, cone56, dodopok, H. Pauwelyn,
haim770, jaredsk, khawarPK, Kobi, RamenChef, SeinopSys,
TheGenie OfTruth, TylerH

28 Grid
Chris Spittles, FelipeAls, Jonathan Zúñiga, Mike McCaughan,
Nhan, Praveen Kumar, RamenChef, Sebastian Zartner

29 Inheritance Chris, mnoronha, RamenChef

30 Inline-Block Layout Marten Koetsier, RamenChef

31
Internet Explorer
Hacks

Aeolingamenfel, animuson, Elizaveta Revyakina, feeela, John
Slegers, LiLacTac, Praveen Kumar, RamenChef,
ScientiaEtVeritas, Timothy Miller, TylerH

32 Layout Control
Arjun Iv, Chathuranga Jayanath, Chris, Jmh2013, Kevin Katzke,
Kurtis Beavers, Madalina Taina, mnoronha, Niek Brouwer,
RamenChef, Sander Koedood, ScientiaEtVeritas, SeinopSys

33 Length Units

4dgaurav, A B, animuson, Epodax, geeksal, J F, Marc, Milche
Patern, Ortomala Lokni, RamenChef, Richard Hamilton,
rmondesilva, Robert Koritnik, Robotnicka, ScientiaEtVeritas,
StefanBob, Stewartside, Thomas Altmann, Toby, user2622348,
vladdobra, Zakaria Acharki, zer00ne

34 List Styles
animuson, Madalina Taina, Marten Koetsier, RamenChef, Ted
Goas

35 Margins
Arjan Einbu, cdm, Chris Spittles, Community, J F, Madalina
Taina, Mr_Green, Nathan Arthur, RamenChef, rejnev, Sun
Qingyao, Sunnyok, Tot Zam, Trevor Clarke

36 Media Queries

amflare, Chathuranga Jayanath, darrylyeo, Demeter Dimitri,
dodopok, James Donnelly, Jmh2013, joe_young, joejoe31b,
John Slegers, Matas Vaitkevicius, Mattia Astorino, Maximillian
Laumeister, Nathan Arthur, Praveen Kumar, RamenChef,
ScientiaEtVeritas, srikarg, Teo Dragovic, Viktor

37 Multiple columns bipon, Sebastian Zartner

https://riptutorial.com/ 295

https://riptutorial.com/contributor/497828/ahmad-alfy
https://riptutorial.com/contributor/4015856/asim-k-t
https://riptutorial.com/contributor/137626/felipeals
https://riptutorial.com/contributor/2198632/fzzylogic
https://riptutorial.com/contributor/1317805/james-donnelly
https://riptutorial.com/contributor/4142458/jef
https://riptutorial.com/contributor/2397327/lambda-ninja
https://riptutorial.com/contributor/6297082/marc-antoine-leclerc
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/2571493/nhan
https://riptutorial.com/contributor/7474949/ori-marash
https://riptutorial.com/contributor/7474949/ori-marash
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1691311/randy
https://riptutorial.com/contributor/1955317/squazz
https://riptutorial.com/contributor/3538394/takeradi
https://riptutorial.com/contributor/734487/ted-goas
https://riptutorial.com/contributor/6036033/timothy-morris
https://riptutorial.com/contributor/2756409/tylerh
https://riptutorial.com/contributor/3375368/demonofthemist
https://riptutorial.com/contributor/137626/felipeals
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1161892/vishak
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/2480653/dodopok
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/7164302/milan-laslop
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/438581/brett-dewoody
https://riptutorial.com/contributor/2229579/cone56
https://riptutorial.com/contributor/2480653/dodopok
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/1625737/haim770
https://riptutorial.com/contributor/2378918/jaredsk
https://riptutorial.com/contributor/1465579/khawarpk
https://riptutorial.com/contributor/7586/kobi
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1344955/seinopsys
https://riptutorial.com/contributor/5931915/thegenie-oftruth
https://riptutorial.com/contributor/2756409/tylerh
https://riptutorial.com/contributor/493762/chris-spittles
https://riptutorial.com/contributor/137626/felipeals
https://riptutorial.com/contributor/1560233/jonathan-zuniga
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/2571493/nhan
https://riptutorial.com/contributor/462627/praveen-kumar
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/432681/sebastian-zartner
https://riptutorial.com/contributor/2030321/chris
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2286722/marten-koetsier
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3681236/aeolingamenfel
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/6771587/elizaveta-revyakina
https://riptutorial.com/contributor/341201/feeela
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/5375837/lilactac
https://riptutorial.com/contributor/462627/praveen-kumar
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/934019/timothy-miller
https://riptutorial.com/contributor/2756409/tylerh
https://riptutorial.com/contributor/6629001/arjun-iv
https://riptutorial.com/contributor/1037793/chathuranga-jayanath
https://riptutorial.com/contributor/2030321/chris
https://riptutorial.com/contributor/1284810/jmh2013
https://riptutorial.com/contributor/1280289/kevin-katzke
https://riptutorial.com/contributor/4109723/kurtis-beavers
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/5347689/niek-brouwer
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1643965/sander-koedood
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/1344955/seinopsys
https://riptutorial.com/contributor/2758393/4dgaurav
https://riptutorial.com/contributor/167362/a-b
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/2285345/epodax
https://riptutorial.com/contributor/3212574/geeksal
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/4382892/marc
https://riptutorial.com/contributor/845310/milche-patern
https://riptutorial.com/contributor/845310/milche-patern
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/4672534/rmondesilva
https://riptutorial.com/contributor/75642/robert-koritnik
https://riptutorial.com/contributor/4534949/robotnicka
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/3317728/stefanbob
https://riptutorial.com/contributor/2889988/stewartside
https://riptutorial.com/contributor/5621225/thomas-altmann
https://riptutorial.com/contributor/4008056/toby
https://riptutorial.com/contributor/2622348/user2622348
https://riptutorial.com/contributor/5074539/vladdobra
https://riptutorial.com/contributor/4281779/zakaria-acharki
https://riptutorial.com/contributor/2813224/zer00ne
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/2286722/marten-koetsier
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/734487/ted-goas
https://riptutorial.com/contributor/734487/ted-goas
https://riptutorial.com/contributor/19594/arjan-einbu
https://riptutorial.com/contributor/4663542/cdm
https://riptutorial.com/contributor/493762/chris-spittles
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/1577396/mr-green
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3764165/rejnev
https://riptutorial.com/contributor/5399734/sun-qingyao
https://riptutorial.com/contributor/5399734/sun-qingyao
https://riptutorial.com/contributor/4290193/sunnyok
https://riptutorial.com/contributor/4660897/tot-zam
https://riptutorial.com/contributor/3998484/trevor-clarke
https://riptutorial.com/contributor/5937428/amflare
https://riptutorial.com/contributor/1037793/chathuranga-jayanath
https://riptutorial.com/contributor/5545315/darrylyeo
https://riptutorial.com/contributor/2172975/demeter-dimitri
https://riptutorial.com/contributor/2480653/dodopok
https://riptutorial.com/contributor/1317805/james-donnelly
https://riptutorial.com/contributor/1284810/jmh2013
https://riptutorial.com/contributor/4206206/joe-young
https://riptutorial.com/contributor/3213602/joejoe31b
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/1490860/mattia-astorino
https://riptutorial.com/contributor/2234742/maximillian-laumeister
https://riptutorial.com/contributor/2234742/maximillian-laumeister
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/462627/praveen-kumar
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/1042093/srikarg
https://riptutorial.com/contributor/2382115/teo-dragovic
https://riptutorial.com/contributor/802246/viktor
https://riptutorial.com/contributor/3764366/bipon
https://riptutorial.com/contributor/432681/sebastian-zartner

38
Normalizing Browser
Styles

andre mcgruder, Confused One, Grant Palin, MMachinegun,
mnoronha, RamenChef, SeinopSys

39
Object Fit and
Placement

4444, Miles, RamenChef

40 Opacity Andrew, animuson, Hillel Tech, Madalina Taina, RamenChef

41 Outlines
Arif, Casey, Chathuranga Jayanath, Daniel Nugent, FelipeAls,
Madalina Taina, RamenChef, ScientiaEtVeritas

42 Overflow
Andrew, bdkopen, jgh, Madalina Taina, Miles, Qaz, RamenChef
, ScientiaEtVeritas, Ted Goas, Zac

43 Padding
Andy G, CalvT, Felix A J, Madalina Taina, Mehdi Dehghani,
Nathan, Paul Sweatte, pixelbandito, RamenChef, StefanBob,
Will DiFruscio

44 Performance mnoronha, RamenChef, TrungDQ

45 Positioning

Abhishek Singh, Alohci, animuson, Blunderfest, CalvT, Cassidy
Williams, Chetan Joshi, GingerPlusPlus, Jacob Gray, Lambda
Ninja, Madalina Taina, Matthew Beckman, Mattia Astorino,
Rahul Nanwani, RamenChef, Sourav Ghosh, Stephen Leppik,
Theodore K., TylerH

46 Pseudo-Elements

4dgaurav, ankit, Chris, Community, dippas, dmnsgn, geek1011,
geeksal, Gofilord, kevin vd, Marcatectura, Milche Patern,
Nathan, Pat, Praveen Kumar, RamenChef, ScientiaEtVeritas,
Shaggy, Stewartside, Sunnyok

75th Trombone, A.J, Aaron, abaracedo, Ahmad Alfy, Alex
Filatov, amflare, Anil, animuson, Araknid, Arjan Einbu, Ashwin
Ramaswami, BoltClock, Cerbrus, Charlie H, Chris, Chris Nager,
Clinton Yeboah, Community, CPHPython, darrylyeo, Dave
Everitt, David Fullerton, Demeter Dimitri, designcise, Devid
Farinelli, Devon Bernard, Dinidu, dippas, Erenor Paz, Felix
Edelmann, Felix Schütz, flyingfisch, Forty, fracz, Frits,
gandreadis, geeksal, George Bailey, George Grigorita, H.
Pauwelyn, HansCz, henry, Hugo Buff, Hynes, J Atkin, J F,
Jacob Gray, James Donnelly, James Taylor, Jasha, jehna1,
Jmh2013, joejoe31b, Joël Bonet Rodríguez, John Slegers,
Kurtis Beavers, Madalina Taina, Marc, Mark Perera, Matas
Vaitkevicius, Matsemann, Michael_B, Milan Laslop, Naeem
Shaikh, Nathan Arthur, Nick, Ortomala Lokni, Persijn, Praveen
Kumar, RamenChef, rdans, Richard Hamilton, Rion Williams,
Robert Koritnik, RockPaperLizard, RoToRa, Sbats,
ScientiaEtVeritas, Shaggy, Siavas, Stewartside, sudo bangbang
, Sumner Evans, Sunnyok, ThatWeirdo, theB, Thomas Gerot,

47 Selectors

https://riptutorial.com/ 296

https://riptutorial.com/contributor/4257303/andre-mcgruder
https://riptutorial.com/contributor/2237305/confused-one
https://riptutorial.com/contributor/68763/grant-palin
https://riptutorial.com/contributor/2102463/mmachinegun
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1344955/seinopsys
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/4075712/miles
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5410688/andrew
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/7516952/hillel-tech
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6254638/arif
https://riptutorial.com/contributor/3969494/casey
https://riptutorial.com/contributor/1037793/chathuranga-jayanath
https://riptutorial.com/contributor/4409409/daniel-nugent
https://riptutorial.com/contributor/137626/felipeals
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/5410688/andrew
https://riptutorial.com/contributor/7214959/bdkopen
https://riptutorial.com/contributor/7861554/jgh
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/4075712/miles
https://riptutorial.com/contributor/2421026/qaz
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/734487/ted-goas
https://riptutorial.com/contributor/2096845/zac
https://riptutorial.com/contributor/620444/andy-g
https://riptutorial.com/contributor/1873567/calvt-
https://riptutorial.com/contributor/1873567/calvt-
https://riptutorial.com/contributor/1155876/felix-a-j
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/3367974/mehdi-dehghani
https://riptutorial.com/contributor/1234583/nathan
https://riptutorial.com/contributor/1113772/paul-sweatte
https://riptutorial.com/contributor/2555029/pixelbandito
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3317728/stefanbob
https://riptutorial.com/contributor/6598808/will-difruscio
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1420186/trungdq
https://riptutorial.com/contributor/5716106/abhishek-singh
https://riptutorial.com/contributor/42585/alohci
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/1174118/blunderfest
https://riptutorial.com/contributor/1873567/calvt-
https://riptutorial.com/contributor/1873567/calvt-
https://riptutorial.com/contributor/1950503/cassidy-williams
https://riptutorial.com/contributor/1950503/cassidy-williams
https://riptutorial.com/contributor/4138675/chetan-joshi
https://riptutorial.com/contributor/3821804/gingerplusplus
https://riptutorial.com/contributor/3285730/jacob-gray
https://riptutorial.com/contributor/2397327/lambda-ninja
https://riptutorial.com/contributor/2397327/lambda-ninja
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/3230030/matthew-beckman
https://riptutorial.com/contributor/1490860/mattia-astorino
https://riptutorial.com/contributor/2314308/rahul-nanwani
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4040525/sourav-ghosh
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/2667686/theodore-k-
https://riptutorial.com/contributor/2756409/tylerh
https://riptutorial.com/contributor/2758393/4dgaurav
https://riptutorial.com/contributor/3148644/ankit
https://riptutorial.com/contributor/2030321/chris
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3448527/dippas
https://riptutorial.com/contributor/1527470/dmnsgn
https://riptutorial.com/contributor/5139282/geek1011
https://riptutorial.com/contributor/3212574/geeksal
https://riptutorial.com/contributor/3448251/gofilord
https://riptutorial.com/contributor/4558080/kevin-vd
https://riptutorial.com/contributor/1592764/marcatectura
https://riptutorial.com/contributor/845310/milche-patern
https://riptutorial.com/contributor/1234583/nathan
https://riptutorial.com/contributor/5712587/pat
https://riptutorial.com/contributor/462627/praveen-kumar
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/4768433/shaggy
https://riptutorial.com/contributor/2889988/stewartside
https://riptutorial.com/contributor/4290193/sunnyok
https://riptutorial.com/contributor/291022/75th-trombone
https://riptutorial.com/contributor/2720743/a-j
https://riptutorial.com/contributor/1676224/aaron
https://riptutorial.com/contributor/2993458/abaracedo
https://riptutorial.com/contributor/497828/ahmad-alfy
https://riptutorial.com/contributor/2173016/alex-filatov
https://riptutorial.com/contributor/2173016/alex-filatov
https://riptutorial.com/contributor/5937428/amflare
https://riptutorial.com/contributor/711308/anil
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/4268627/araknid
https://riptutorial.com/contributor/19594/arjan-einbu
https://riptutorial.com/contributor/1950269/ashwin-ramaswami
https://riptutorial.com/contributor/1950269/ashwin-ramaswami
https://riptutorial.com/contributor/106224/boltclock
https://riptutorial.com/contributor/1835379/cerbrus
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/2030321/chris
https://riptutorial.com/contributor/1655926/chris-nager
https://riptutorial.com/contributor/6443770/clinton-yeboah
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6225838/cphpython
https://riptutorial.com/contributor/5545315/darrylyeo
https://riptutorial.com/contributor/123033/dave-everitt
https://riptutorial.com/contributor/123033/dave-everitt
https://riptutorial.com/contributor/91687/david-fullerton
https://riptutorial.com/contributor/2172975/demeter-dimitri
https://riptutorial.com/contributor/2382283/designcise
https://riptutorial.com/contributor/4695325/devid-farinelli
https://riptutorial.com/contributor/4695325/devid-farinelli
https://riptutorial.com/contributor/1407020/devon-bernard
https://riptutorial.com/contributor/1615830/dinidu
https://riptutorial.com/contributor/3448527/dippas
https://riptutorial.com/contributor/1356098/erenor-paz
https://riptutorial.com/contributor/2796524/felix-edelmann
https://riptutorial.com/contributor/2796524/felix-edelmann
https://riptutorial.com/contributor/4362643/felix-schutz
https://riptutorial.com/contributor/1809645/flyingfisch
https://riptutorial.com/contributor/5900863/forty
https://riptutorial.com/contributor/878514/fracz
https://riptutorial.com/contributor/6049581/frits
https://riptutorial.com/contributor/6171547/gandreadis
https://riptutorial.com/contributor/3212574/geeksal
https://riptutorial.com/contributor/463304/george-bailey
https://riptutorial.com/contributor/1197019/george-grigorita
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/173679/hanscz
https://riptutorial.com/contributor/1241736/henry
https://riptutorial.com/contributor/3392335/hugo-buff
https://riptutorial.com/contributor/2640230/hynes
https://riptutorial.com/contributor/4683264/j-atkin
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/3285730/jacob-gray
https://riptutorial.com/contributor/1317805/james-donnelly
https://riptutorial.com/contributor/1944335/james-taylor
https://riptutorial.com/contributor/1376505/jasha
https://riptutorial.com/contributor/2697279/jehna1
https://riptutorial.com/contributor/1284810/jmh2013
https://riptutorial.com/contributor/3213602/joejoe31b
https://riptutorial.com/contributor/6479108/joel-bonet-rodriguez
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/4109723/kurtis-beavers
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/4382892/marc
https://riptutorial.com/contributor/6574064/mark-perera
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/923847/matsemann
https://riptutorial.com/contributor/3597276/michael-b
https://riptutorial.com/contributor/7164302/milan-laslop
https://riptutorial.com/contributor/3556874/naeem-shaikh
https://riptutorial.com/contributor/3556874/naeem-shaikh
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/3210868/nick
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/3999748/persijn
https://riptutorial.com/contributor/462627/praveen-kumar
https://riptutorial.com/contributor/462627/praveen-kumar
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2617732/rdans
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/75642/robert-koritnik
https://riptutorial.com/contributor/4182398/rockpaperlizard
https://riptutorial.com/contributor/318493/rotora
https://riptutorial.com/contributor/6256332/sbats
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/4768433/shaggy
https://riptutorial.com/contributor/5838198/siavas
https://riptutorial.com/contributor/2889988/stewartside
https://riptutorial.com/contributor/3951782/sudo-bangbang
https://riptutorial.com/contributor/2319844/sumner-evans
https://riptutorial.com/contributor/4290193/sunnyok
https://riptutorial.com/contributor/2566065/thatweirdo
https://riptutorial.com/contributor/5240004/theb
https://riptutorial.com/contributor/7343856/thomas-gerot

TylerH, xpy, Yury Fedorov, Zac, Zaffy, Zaz, Ze Rubeus, Zze

48 Shapes for Floats animuson, Harry, RamenChef, ScientiaEtVeritas

49
Single Element
Shapes

andreas, animuson, Brett DeWoody, Chiller, J F, Nick,
RamenChef, ScientiaEtVeritas, TylerH

50 Stacking Context Nemanja Trifunovic, RamenChef

51
Structure and
Formatting of a CSS
Rule

Alon Eitan, darrylyeo, Marjorie Pickard

52 Tables Casper Spruit, Chris, FelipeAls, JHS, Madalina Taina

53 The Box Model
Arjan Einbu, Ben Rhys-Lewis, Benolot, BiscuitBaker, FelipeAls,
James Donnelly, Lambda Ninja, Nathan Arthur, Ortomala Lokni,
RamenChef, ScientiaEtVeritas, Sergej, V-Kopio

54 Transitions
Christiaan Maks, dippas, Harry, Praveen Kumar, RamenChef,
Richard Hamilton, ScientiaEtVeritas, Sergey Denisov, web-tiki

55 Typography

Alex Morales, Alohci, andreas, Arjan Einbu, ChaoticTwist,
Evgeny, Felix A J, Goulven, Hynes, insertusernamehere, James
Donnelly, joe_young, Jon Chan, Madalina Taina, Michael
Moriarty, Nathan Arthur, Nhan, Praveen Kumar, RamenChef,
Richard Hamilton, rmondesilva, Ryan, Sourav Ghosh, Suhaib
Janjua, Ted Goas, Toby, ToniB, Trevor Clarke, user2622348,
Vlusion, Volker E.

56 Vertical Centering
animuson, AVAVT, bocanegra, Chiller, Chris, jaredsk, leo_ap,
mmativ, patelarpan, Phil, Praveen Kumar, RamenChef

https://riptutorial.com/ 297

https://riptutorial.com/contributor/2756409/tylerh
https://riptutorial.com/contributor/1982831/xpy
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/2096845/zac
https://riptutorial.com/contributor/823738/zaffy
https://riptutorial.com/contributor/405550/zaz
https://riptutorial.com/contributor/4232386/ze-rubeus
https://riptutorial.com/contributor/3509591/zze
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/2606013/harry
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/4952806/andreas
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/438581/brett-dewoody
https://riptutorial.com/contributor/3844188/chiller
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/3210868/nick
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/2756409/tylerh
https://riptutorial.com/contributor/4004007/nemanja-trifunovic
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/754119/alon-eitan
https://riptutorial.com/contributor/5545315/darrylyeo
https://riptutorial.com/contributor/7855318/marjorie-pickard
https://riptutorial.com/contributor/4649882/casper-spruit
https://riptutorial.com/contributor/2030321/chris
https://riptutorial.com/contributor/137626/felipeals
https://riptutorial.com/contributor/3538313/jhs
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/19594/arjan-einbu
https://riptutorial.com/contributor/4509121/ben-rhys-lewis
https://riptutorial.com/contributor/6625936/benolot
https://riptutorial.com/contributor/1482673/biscuitbaker
https://riptutorial.com/contributor/137626/felipeals
https://riptutorial.com/contributor/1317805/james-donnelly
https://riptutorial.com/contributor/2397327/lambda-ninja
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/2788742/sergej
https://riptutorial.com/contributor/5047630/v-kopio
https://riptutorial.com/contributor/3710120/christiaan-maks
https://riptutorial.com/contributor/3448527/dippas
https://riptutorial.com/contributor/2606013/harry
https://riptutorial.com/contributor/462627/praveen-kumar
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/2570353/sergey-denisov
https://riptutorial.com/contributor/1811992/web-tiki
https://riptutorial.com/contributor/135233/alex-morales
https://riptutorial.com/contributor/42585/alohci
https://riptutorial.com/contributor/4952806/andreas
https://riptutorial.com/contributor/19594/arjan-einbu
https://riptutorial.com/contributor/5996838/chaotictwist
https://riptutorial.com/contributor/1189546/evgeny
https://riptutorial.com/contributor/1155876/felix-a-j
https://riptutorial.com/contributor/766301/goulven
https://riptutorial.com/contributor/2640230/hynes
https://riptutorial.com/contributor/1456376/insertusernamehere
https://riptutorial.com/contributor/1317805/james-donnelly
https://riptutorial.com/contributor/1317805/james-donnelly
https://riptutorial.com/contributor/4206206/joe-young
https://riptutorial.com/contributor/1043674/jon-chan
https://riptutorial.com/contributor/3830698/madalina-taina
https://riptutorial.com/contributor/4515471/michael-moriarty
https://riptutorial.com/contributor/4515471/michael-moriarty
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/2571493/nhan
https://riptutorial.com/contributor/462627/praveen-kumar
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/4672534/rmondesilva
https://riptutorial.com/contributor/707111/ryan
https://riptutorial.com/contributor/4040525/sourav-ghosh
https://riptutorial.com/contributor/3240038/suhaib-janjua
https://riptutorial.com/contributor/3240038/suhaib-janjua
https://riptutorial.com/contributor/734487/ted-goas
https://riptutorial.com/contributor/4008056/toby
https://riptutorial.com/contributor/3614064/tonib
https://riptutorial.com/contributor/3998484/trevor-clarke
https://riptutorial.com/contributor/2622348/user2622348
https://riptutorial.com/contributor/5539376/vlusion
https://riptutorial.com/contributor/1696030/volker-e-
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/1645830/avavt
https://riptutorial.com/contributor/5220895/bocanegra
https://riptutorial.com/contributor/3844188/chiller
https://riptutorial.com/contributor/4111568/chris
https://riptutorial.com/contributor/2378918/jaredsk
https://riptutorial.com/contributor/1644937/leo-ap
https://riptutorial.com/contributor/5321188/mmativ
https://riptutorial.com/contributor/3710481/patelarpan
https://riptutorial.com/contributor/6429774/phil
https://riptutorial.com/contributor/462627/praveen-kumar
https://riptutorial.com/contributor/6392939/ramenchef

	About
	Chapter 1: Getting started with CSS
	Remarks
	Versions
	Examples
	External Stylesheet

	Example
	Internal Styles
	Inline Styles
	CSS @import rule (one of CSS at-rule)
	How to use @import
	Changing CSS with JavaScript

	Pure JavaScript
	jQuery

	See also
	Styling Lists with CSS

	Chapter 2: 2D Transforms
	Syntax
	Parameters
	Remarks
	2D Coordiante system
	Browser support and prefixes
	Example of prefixed transform:
	Examples
	Rotate
	Scale
	Translate
	Skew
	Multiple transforms
	Transform Origin

	Chapter 3: 3D Transforms
	Remarks
	Coordinate system
	Examples
	3D cube
	backface-visibility
	Compass pointer or needle shape using 3D transforms

	CSS
	HTML
	3D text effect with shadow

	Chapter 4: Animations
	Syntax
	Parameters
	Examples
	Animations with the transition property

	Example
	Cross-Browser Compatibility
	Increasing Animation Performance Using the `will-change` Attribute
	Animations with keyframes
	Basic Example
	Cross-browser compatibility
	Syntax Examples

	Chapter 5: Backgrounds
	Introduction
	Syntax
	Remarks
	Examples
	Background Color
	Color names

	Hex color codes
	RGB / RGBa
	HSL / HSLa
	Interaction with background-image
	Background Image
	Background Gradients

	linear-gradient()
	radial-gradient()
	Repeating gradients
	Background Shorthand
	Syntax
	Examples
	Background Position

	Longhand Background Position Properties
	Background Attachment

	Examples
	background-attachment: scroll
	background-attachment: fixed
	background-attachment: local
	Background Repeat
	Background Color with Opacity
	Multiple Background Image
	The background-origin property
	Background Clip
	Background Size

	General overview
	Keeping the aspect ratio
	Eggsplanation for contain and cover
	contain
	cover
	Demonstration with actual code
	background-blend-mode Property

	Chapter 6: Block Formatting Contexts
	Remarks
	Examples
	Using the overflow property with a value different to visible

	Chapter 7: Border
	Syntax
	Remarks
	Examples
	border-radius
	border-style
	border (shorthands)
	border-image
	border-[left|right|top|bottom]
	border-collapse
	Multiple Borders
	Creating a multi-colored border using border-image

	CSS
	HTML
	Chapter 8: box-shadow
	Syntax
	Parameters
	Remarks
	Examples
	drop shadow
	inner drop shadow
	bottom-only drop shadow using a pseudo-element
	multiple shadows

	Chapter 9: Browser Support & Prefixes
	Parameters
	Remarks
	Examples
	Transitions
	Transform

	Chapter 10: Cascading and Specificity
	Remarks
	Examples
	Cascading

	CSS Loading order
	How are conflicts resolved?
	Example 1 - Specificity rules
	Example 2 - Cascade rules with identical selectors
	Example 3 - Cascade rules after Specificity rules
	A final note
	The !important declaration
	Calculating Selector Specificity
	Example 1: Specificity of various selector sequences
	Example 2: How specificity is used by the browser
	Example 3: How to manipulate specificity
	!important and inline style declarations
	A final note
	More complex specificity example

	Chapter 11: Centering
	Examples
	Using CSS transform
	CROSS BROWSER COMPATIBILITY
	MORE INFORMATION
	Using Flexbox
	Using position: absolute
	Ghost element technique (Michał Czernow's hack)
	Using text-align
	Centering in relation to another item
	Vertical align anything with 3 lines of code
	Vertically align an image inside div
	Horizontal and Vertical centering using table layout
	Using calc()
	Vertically align dynamic height elements
	Using line-height
	Centering vertically and horizontally without worrying about height or width

	The outer container
	The inner container
	The content box
	Demo
	Centering with fixed size
	Horizontal centering with only fixed width
	Vertical centering with fixed height
	Using margin: 0 auto;

	Chapter 12: Clipping and Masking
	Syntax
	Parameters
	Remarks

	Masks:
	Clip-path:
	Examples
	Clipping (Polygon)

	CSS:
	HTML:
	Clipping (Circle)

	CSS:
	HTML
	Clipping and Masking: Overview and Difference
	Clipping
	Masking
	Simple mask that fades an image from solid to transparent

	CSS
	HTML
	Using masks to cut a hole in the middle of an image

	CSS
	HTML
	Using masks to create images with irregular shapes

	CSS
	HTML
	Chapter 13: Colors
	Syntax
	Examples
	Color Keywords

	Color Keywords
	Hexadecimal Value
	Background
	Syntax
	rgb() Notation

	Syntax
	hsl() Notation

	Syntax
	Notes
	currentColor
	Use in same element
	Inherited from parent element
	rgba() Notation

	Syntax
	hsla() Notation

	Syntax
	Chapter 14: Columns
	Syntax
	Examples
	Simple Example (column-count)
	Column Width

	Chapter 15: Comments
	Syntax
	Remarks
	Examples
	Single Line
	Multiple Line

	Chapter 16: Counters
	Syntax
	Parameters
	Remarks
	Examples
	Applying roman numerals styling to the counter output

	CSS
	HTML
	Number each item using CSS Counter

	CSS
	HTML
	Implementing multi-level numbering using CSS counters

	CSS
	HTML
	Chapter 17: CSS design patterns
	Introduction
	Remarks
	Examples
	BEM

	Code example
	Chapter 18: CSS Image Sprites
	Syntax
	Remarks
	Examples
	A Basic Implementation

	Chapter 19: CSS Object Model (CSSOM)
	Remarks
	Examples
	Introduction
	Adding a background-image rule via the CSSOM

	Chapter 20: Cursor Styling
	Syntax
	Examples
	Changing cursor type
	pointer-events
	caret-color

	Chapter 21: Custom Properties (Variables)
	Introduction
	Syntax
	Remarks
	BROWSER SUPPORT / COMPATIBILITY
	Examples
	Variable Color
	Variable Dimensions
	Variable Cascading
	Valid/Invalids
	With media queries

	Chapter 22: Feature Queries
	Syntax
	Parameters
	Remarks
	Examples
	Basic @supports usage
	Chaining feature detections

	Chapter 23: Filter Property
	Syntax
	Parameters
	Remarks
	Examples
	Drop Shadow (use box-shadow instead if possible)
	Multiple Filter Values
	Hue Rotate
	Invert Color
	Blur

	Chapter 24: Flexible Box Layout (Flexbox)
	Introduction
	Syntax
	Remarks

	Vender Prefixes
	Resources
	Examples
	Sticky Variable-Height Footer
	Holy Grail Layout using Flexbox
	Perfectly aligned buttons inside cards with flexbox
	Dynamic Vertical and Horizontal Centering (align-items, justify-content)

	Simple Example (centering a single element)
	HTML
	CSS

	Reasoning
	Individual Property Examples
	Example: justify-content: center on a horizontal flexbox
	Example: justify-content: center on a vertical flexbox
	Example: align-content: center on a horizontal flexbox
	Example: align-content: center on a vertical flexbox
	Example: Combination for centering both on horizontal flexbox
	Example: Combination for centering both on vertical flexbox
	Same height on nested containers
	Optimally fit elements to their container

	Chapter 25: Floats
	Syntax
	Remarks
	Examples
	Float an Image Within Text
	Simple Two Fixed-Width Column Layout
	Simple Three Fixed-Width Column Layout
	Two-Column Lazy/Greedy Layout
	clear property
	Clearfix

	Clearfix (with top margin collapsing of contained floats still occurring)
	Clearfix also preventing top margin collapsing of contained floats
	Clearfix with support of outdated browsers IE6 and IE7
	In-line DIV using float
	Use of overflow property to clear floats

	Chapter 26: Fragmentation
	Syntax
	Parameters
	Remarks
	Examples
	Media print page-break

	Chapter 27: Functions
	Syntax
	Remarks
	Examples
	calc() function
	attr() function
	linear-gradient() function
	radial-gradient() function
	var() function

	Chapter 28: Grid
	Introduction
	Remarks
	Examples
	Basic Example

	Chapter 29: Inheritance
	Syntax
	Examples
	Automatic inheritance
	Enforced inheritance

	Chapter 30: Inline-Block Layout
	Examples
	Justified navigation bar

	HTML
	CSS
	Notes
	Chapter 31: Internet Explorer Hacks
	Remarks
	Examples
	High Contrast Mode in Internet Explorer 10 and greater

	Examples
	More Information:
	Internet Explorer 6 & Internet Explorer 7 only
	Internet Explorer 8 only
	Adding Inline Block support to IE6 and IE7

	Chapter 32: Layout Control
	Syntax
	Parameters
	Examples
	The display property

	Inline
	Block
	Inline Block
	none
	To get old table structure using div

	Chapter 33: Length Units
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Font size with rem
	Creating scalable elements using rems and ems
	vh and vw
	vmin and vmax
	using percent %

	Chapter 34: List Styles
	Syntax
	Parameters
	Remarks
	Examples
	Type of Bullet or Numbering
	Bullet Position
	Removing Bullets / Numbers

	Chapter 35: Margins
	Syntax
	Parameters
	Remarks
	Examples
	Apply Margin on a Given Side

	Direction-Specific Properties
	Specifying Direction Using Shorthand Property
	Margin Collapsing
	Horizontally center elements on a page using margin
	Margin property simplification
	Negative margins
	Example 1:

	Chapter 36: Media Queries
	Syntax
	Parameters
	Remarks
	Examples
	Basic Example
	Use on link tag
	mediatype
	Using Media Queries to Target Different Screen Sizes
	Width vs Viewport
	Media Queries for Retina and Non Retina Screens
	Terminology and Structure

	General Structure of a Media Query
	A Media Query containing a Media Type
	A Media Query containing a Media Type and a Media Feature
	A Media Query containing a Media Feature (and an implicit Media Type of "all")
	Media queries and IE8
	A Javascript based workaround
	The alternative

	Chapter 37: Multiple columns
	Introduction
	Remarks
	Examples
	Basic example
	Create Multiple Columns

	Chapter 38: Normalizing Browser Styles
	Introduction
	Remarks
	Examples
	normalize.css

	What does it do
	Difference to reset.css
	Approaches and Examples

	Chapter 39: Object Fit and Placement
	Remarks
	Examples
	object-fit

	Chapter 40: Opacity
	Syntax
	Remarks
	Examples
	Opacity Property
	IE Compatibility for `opacity`

	Chapter 41: Outlines
	Syntax
	Parameters
	Remarks
	Examples
	Overview
	outline-style

	Chapter 42: Overflow
	Syntax
	Parameters
	Remarks
	Examples
	overflow: scroll
	overflow-wrap
	overflow: visible
	Block Formatting Context Created with Overflow
	overflow-x and overflow-y

	Chapter 43: Padding
	Syntax
	Remarks
	Examples
	Padding on a given side
	Padding Shorthand

	Chapter 44: Performance
	Examples
	Use transform and opacity to avoid trigger layout

	DON'T
	DO
	Chapter 45: Positioning
	Syntax
	Parameters
	Remarks
	Examples
	Fixed position
	Overlapping Elements with z-index

	Example
	HTML
	CSS

	Syntax
	Remarks
	Relative Position
	Absolute Position
	Static positioning

	Chapter 46: Pseudo-Elements
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Pseudo-Elements
	Pseudo-Elements in Lists

	Chapter 47: Selectors
	Introduction
	Syntax
	Remarks
	Examples
	Attribute Selectors

	Overview
	Details
	[attribute]
	[attribute="value"]
	[attribute*="value"]
	[attribute~="value"]
	[attribute^="value"]
	[attribute$="value"]
	[attribute|="value"]
	[attribute="value" i]

	Specificity of attribute selectors
	0-1-0
	Combinators

	Overview
	Descendant Combinator: selector selector
	Child Combinator: selector > selector
	Adjacent Sibling Combinator: selector + selector
	General Sibling Combinator: selector ~ selector
	Class Name Selectors
	ID selectors
	Pseudo-classes
	Syntax
	List of pseudo-classes:
	Basic selectors
	How to style a Range input
	Global boolean with checkbox:checked and ~ (general sibling combinator)

	Add boolean as a checkbox
	Change the boolean's value
	Accessing boolean value with CSS
	In action
	CSS3 :in-range selector example
	Child Pseudo Class
	Select element using its ID without the high specificity of the ID selector
	A. The :not pseudo-class example & B. :focus-within CSS pseudo-class
	The :only-child pseudo-class selector example
	The :last-of-type selector

	Chapter 48: Shapes for Floats
	Syntax
	Parameters
	Remarks
	Examples
	Shape Outside with Basic Shape – circle()
	Shape margin

	Chapter 49: Single Element Shapes
	Examples
	Square
	Triangles
	Bursts
	Circles and Ellipses

	Circle
	Ellipse
	Trapezoid
	Cube
	Pyramid

	Chapter 50: Stacking Context
	Examples
	Stacking Context

	Chapter 51: Structure and Formatting of a CSS Rule
	Remarks

	Good
	Bad
	One-Liner
	Examples
	Rules, Selectors, and Declaration Blocks
	Property Lists
	Multiple Selectors

	Chapter 52: Tables
	Syntax
	Remarks
	Examples
	table-layout
	border-collapse
	border-spacing
	empty-cells
	caption-side

	Chapter 53: The Box Model
	Syntax
	Parameters
	Remarks

	About padding-box
	Examples
	What is the Box Model?

	The Edges
	Example
	box-sizing

	Chapter 54: Transitions
	Syntax
	Parameters
	Remarks
	Examples
	Transition shorthand
	Transition (longhand)

	CSS
	HTML
	cubic-bezier

	Chapter 55: Typography
	Syntax
	Parameters
	Remarks
	Examples
	Font Size
	The Font Shorthand
	Font Stacks
	Letter Spacing
	Text Transform
	Text Indent
	Text Decoration
	Text Overflow
	Word Spacing
	Text Direction
	Font Variant
	Quotes
	Text Shadow
	Shadow without blur radius
	Shadow with blur radius
	Multiple Shadows

	Chapter 56: Vertical Centering
	Remarks
	Examples
	Centering with display: table
	Centering with Transform
	Centering with Flexbox
	Centering Text with Line Height
	Centering with Position: absolute
	Centering with pseudo element

	Credits

